Metamath Proof Explorer


Theorem xpcco2

Description: Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses xpcco2.t T = C × c D
xpcco2.x X = Base C
xpcco2.y Y = Base D
xpcco2.h H = Hom C
xpcco2.j J = Hom D
xpcco2.m φ M X
xpcco2.n φ N Y
xpcco2.p φ P X
xpcco2.q φ Q Y
xpcco2.o1 · ˙ = comp C
xpcco2.o2 ˙ = comp D
xpcco2.o O = comp T
xpcco2.r φ R X
xpcco2.s φ S Y
xpcco2.f φ F M H P
xpcco2.g φ G N J Q
xpcco2.k φ K P H R
xpcco2.l φ L Q J S
Assertion xpcco2 φ K L M N P Q O R S F G = K M P · ˙ R F L N Q ˙ S G

Proof

Step Hyp Ref Expression
1 xpcco2.t T = C × c D
2 xpcco2.x X = Base C
3 xpcco2.y Y = Base D
4 xpcco2.h H = Hom C
5 xpcco2.j J = Hom D
6 xpcco2.m φ M X
7 xpcco2.n φ N Y
8 xpcco2.p φ P X
9 xpcco2.q φ Q Y
10 xpcco2.o1 · ˙ = comp C
11 xpcco2.o2 ˙ = comp D
12 xpcco2.o O = comp T
13 xpcco2.r φ R X
14 xpcco2.s φ S Y
15 xpcco2.f φ F M H P
16 xpcco2.g φ G N J Q
17 xpcco2.k φ K P H R
18 xpcco2.l φ L Q J S
19 1 2 3 xpcbas X × Y = Base T
20 eqid Hom T = Hom T
21 6 7 opelxpd φ M N X × Y
22 8 9 opelxpd φ P Q X × Y
23 13 14 opelxpd φ R S X × Y
24 15 16 opelxpd φ F G M H P × N J Q
25 1 2 3 4 5 6 7 8 9 20 xpchom2 φ M N Hom T P Q = M H P × N J Q
26 24 25 eleqtrrd φ F G M N Hom T P Q
27 17 18 opelxpd φ K L P H R × Q J S
28 1 2 3 4 5 8 9 13 14 20 xpchom2 φ P Q Hom T R S = P H R × Q J S
29 27 28 eleqtrrd φ K L P Q Hom T R S
30 1 19 20 10 11 12 21 22 23 26 29 xpcco φ K L M N P Q O R S F G = 1 st K L 1 st M N 1 st P Q · ˙ 1 st R S 1 st F G 2 nd K L 2 nd M N 2 nd P Q ˙ 2 nd R S 2 nd F G
31 op1stg M X N Y 1 st M N = M
32 6 7 31 syl2anc φ 1 st M N = M
33 op1stg P X Q Y 1 st P Q = P
34 8 9 33 syl2anc φ 1 st P Q = P
35 32 34 opeq12d φ 1 st M N 1 st P Q = M P
36 op1stg R X S Y 1 st R S = R
37 13 14 36 syl2anc φ 1 st R S = R
38 35 37 oveq12d φ 1 st M N 1 st P Q · ˙ 1 st R S = M P · ˙ R
39 op1stg K P H R L Q J S 1 st K L = K
40 17 18 39 syl2anc φ 1 st K L = K
41 op1stg F M H P G N J Q 1 st F G = F
42 15 16 41 syl2anc φ 1 st F G = F
43 38 40 42 oveq123d φ 1 st K L 1 st M N 1 st P Q · ˙ 1 st R S 1 st F G = K M P · ˙ R F
44 op2ndg M X N Y 2 nd M N = N
45 6 7 44 syl2anc φ 2 nd M N = N
46 op2ndg P X Q Y 2 nd P Q = Q
47 8 9 46 syl2anc φ 2 nd P Q = Q
48 45 47 opeq12d φ 2 nd M N 2 nd P Q = N Q
49 op2ndg R X S Y 2 nd R S = S
50 13 14 49 syl2anc φ 2 nd R S = S
51 48 50 oveq12d φ 2 nd M N 2 nd P Q ˙ 2 nd R S = N Q ˙ S
52 op2ndg K P H R L Q J S 2 nd K L = L
53 17 18 52 syl2anc φ 2 nd K L = L
54 op2ndg F M H P G N J Q 2 nd F G = G
55 15 16 54 syl2anc φ 2 nd F G = G
56 51 53 55 oveq123d φ 2 nd K L 2 nd M N 2 nd P Q ˙ 2 nd R S 2 nd F G = L N Q ˙ S G
57 43 56 opeq12d φ 1 st K L 1 st M N 1 st P Q · ˙ 1 st R S 1 st F G 2 nd K L 2 nd M N 2 nd P Q ˙ 2 nd R S 2 nd F G = K M P · ˙ R F L N Q ˙ S G
58 30 57 eqtrd φ K L M N P Q O R S F G = K M P · ˙ R F L N Q ˙ S G