Metamath Proof Explorer


Theorem fucid

Description: The identity morphism in the functor category. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fucid.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
fucid.i 𝐼 = ( Id ‘ 𝑄 )
fucid.1 1 = ( Id ‘ 𝐷 )
fucid.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
Assertion fucid ( 𝜑 → ( 𝐼𝐹 ) = ( 1 ∘ ( 1st𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 fucid.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
2 fucid.i 𝐼 = ( Id ‘ 𝑄 )
3 fucid.1 1 = ( Id ‘ 𝐷 )
4 fucid.f ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
5 funcrcl ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) )
6 4 5 syl ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) )
7 6 simpld ( 𝜑𝐶 ∈ Cat )
8 6 simprd ( 𝜑𝐷 ∈ Cat )
9 1 7 8 3 fuccatid ( 𝜑 → ( 𝑄 ∈ Cat ∧ ( Id ‘ 𝑄 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ↦ ( 1 ∘ ( 1st𝑓 ) ) ) ) )
10 9 simprd ( 𝜑 → ( Id ‘ 𝑄 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ↦ ( 1 ∘ ( 1st𝑓 ) ) ) )
11 2 10 syl5eq ( 𝜑𝐼 = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) ↦ ( 1 ∘ ( 1st𝑓 ) ) ) )
12 simpr ( ( 𝜑𝑓 = 𝐹 ) → 𝑓 = 𝐹 )
13 12 fveq2d ( ( 𝜑𝑓 = 𝐹 ) → ( 1st𝑓 ) = ( 1st𝐹 ) )
14 13 coeq2d ( ( 𝜑𝑓 = 𝐹 ) → ( 1 ∘ ( 1st𝑓 ) ) = ( 1 ∘ ( 1st𝐹 ) ) )
15 3 fvexi 1 ∈ V
16 fvex ( 1st𝐹 ) ∈ V
17 15 16 coex ( 1 ∘ ( 1st𝐹 ) ) ∈ V
18 17 a1i ( 𝜑 → ( 1 ∘ ( 1st𝐹 ) ) ∈ V )
19 11 14 4 18 fvmptd ( 𝜑 → ( 𝐼𝐹 ) = ( 1 ∘ ( 1st𝐹 ) ) )