Metamath Proof Explorer


Theorem evlfcllem

Description: Lemma for evlfcl . (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses evlfcl.e 𝐸 = ( 𝐶 evalF 𝐷 )
evlfcl.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
evlfcl.c ( 𝜑𝐶 ∈ Cat )
evlfcl.d ( 𝜑𝐷 ∈ Cat )
evlfcl.n 𝑁 = ( 𝐶 Nat 𝐷 )
evlfcl.f ( 𝜑 → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) )
evlfcl.g ( 𝜑 → ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) )
evlfcl.h ( 𝜑 → ( 𝐻 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) )
evlfcl.a ( 𝜑 → ( 𝐴 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝐾 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) )
evlfcl.b ( 𝜑 → ( 𝐵 ∈ ( 𝐺 𝑁 𝐻 ) ∧ 𝐿 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ) )
Assertion evlfcllem ( 𝜑 → ( ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) ‘ ( ⟨ 𝐵 , 𝐿 ⟩ ( ⟨ ⟨ 𝐹 , 𝑋 ⟩ , ⟨ 𝐺 , 𝑌 ⟩ ⟩ ( comp ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝐻 , 𝑍 ⟩ ) ⟨ 𝐴 , 𝐾 ⟩ ) ) = ( ( ( ⟨ 𝐺 , 𝑌 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) ‘ ⟨ 𝐵 , 𝐿 ⟩ ) ( ⟨ ( ( 1st𝐸 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) , ( ( 1st𝐸 ) ‘ ⟨ 𝐺 , 𝑌 ⟩ ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ ⟨ 𝐻 , 𝑍 ⟩ ) ) ( ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑌 ⟩ ) ‘ ⟨ 𝐴 , 𝐾 ⟩ ) ) )

Proof

Step Hyp Ref Expression
1 evlfcl.e 𝐸 = ( 𝐶 evalF 𝐷 )
2 evlfcl.q 𝑄 = ( 𝐶 FuncCat 𝐷 )
3 evlfcl.c ( 𝜑𝐶 ∈ Cat )
4 evlfcl.d ( 𝜑𝐷 ∈ Cat )
5 evlfcl.n 𝑁 = ( 𝐶 Nat 𝐷 )
6 evlfcl.f ( 𝜑 → ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( Base ‘ 𝐶 ) ) )
7 evlfcl.g ( 𝜑 → ( 𝐺 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) )
8 evlfcl.h ( 𝜑 → ( 𝐻 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) )
9 evlfcl.a ( 𝜑 → ( 𝐴 ∈ ( 𝐹 𝑁 𝐺 ) ∧ 𝐾 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) )
10 evlfcl.b ( 𝜑 → ( 𝐵 ∈ ( 𝐺 𝑁 𝐻 ) ∧ 𝐿 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ) )
11 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
12 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
13 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
14 6 simpld ( 𝜑𝐹 ∈ ( 𝐶 Func 𝐷 ) )
15 8 simpld ( 𝜑𝐻 ∈ ( 𝐶 Func 𝐷 ) )
16 6 simprd ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
17 8 simprd ( 𝜑𝑍 ∈ ( Base ‘ 𝐶 ) )
18 eqid ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) = ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ )
19 eqid ( comp ‘ 𝑄 ) = ( comp ‘ 𝑄 )
20 9 simpld ( 𝜑𝐴 ∈ ( 𝐹 𝑁 𝐺 ) )
21 10 simpld ( 𝜑𝐵 ∈ ( 𝐺 𝑁 𝐻 ) )
22 2 5 19 20 21 fuccocl ( 𝜑 → ( 𝐵 ( ⟨ 𝐹 , 𝐺 ⟩ ( comp ‘ 𝑄 ) 𝐻 ) 𝐴 ) ∈ ( 𝐹 𝑁 𝐻 ) )
23 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
24 7 simprd ( 𝜑𝑌 ∈ ( Base ‘ 𝐶 ) )
25 9 simprd ( 𝜑𝐾 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
26 10 simprd ( 𝜑𝐿 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) )
27 11 12 23 3 16 24 17 25 26 catcocl ( 𝜑 → ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑍 ) 𝐾 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) )
28 1 3 4 11 12 13 5 14 15 16 17 18 22 27 evlf2val ( 𝜑 → ( ( 𝐵 ( ⟨ 𝐹 , 𝐺 ⟩ ( comp ‘ 𝑄 ) 𝐻 ) 𝐴 ) ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑍 ) 𝐾 ) ) = ( ( ( 𝐵 ( ⟨ 𝐹 , 𝐺 ⟩ ( comp ‘ 𝑄 ) 𝐻 ) 𝐴 ) ‘ 𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑍 ) ‘ ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑍 ) 𝐾 ) ) ) )
29 2 5 11 13 19 20 21 17 fuccoval ( 𝜑 → ( ( 𝐵 ( ⟨ 𝐹 , 𝐺 ⟩ ( comp ‘ 𝑄 ) 𝐻 ) 𝐴 ) ‘ 𝑍 ) = ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑍 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑍 ) ) )
30 29 oveq1d ( 𝜑 → ( ( ( 𝐵 ( ⟨ 𝐹 , 𝐺 ⟩ ( comp ‘ 𝑄 ) 𝐻 ) 𝐴 ) ‘ 𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑍 ) ‘ ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑍 ) 𝐾 ) ) ) = ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑍 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑍 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑍 ) ‘ ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑍 ) 𝐾 ) ) ) )
31 relfunc Rel ( 𝐶 Func 𝐷 )
32 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
33 31 14 32 sylancr ( 𝜑 → ( 1st𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐹 ) )
34 11 12 23 13 33 16 24 17 25 26 funcco ( 𝜑 → ( ( 𝑋 ( 2nd𝐹 ) 𝑍 ) ‘ ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑍 ) 𝐾 ) ) = ( ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝐿 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ) )
35 34 oveq2d ( 𝜑 → ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑍 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑍 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑍 ) ‘ ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑍 ) 𝐾 ) ) ) = ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑍 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑍 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝐿 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ) ) )
36 5 20 nat1st2nd ( 𝜑𝐴 ∈ ( ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ 𝑁 ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ ) )
37 5 36 11 12 13 24 17 26 nati ( 𝜑 → ( ( 𝐴𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝐿 ) ) = ( ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) ( 𝐴𝑌 ) ) )
38 37 oveq2d ( 𝜑 → ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝐴𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝐿 ) ) ) = ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) ( 𝐴𝑌 ) ) ) )
39 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
40 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
41 11 39 33 funcf1 ( 𝜑 → ( 1st𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
42 41 24 ffvelrnd ( 𝜑 → ( ( 1st𝐹 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐷 ) )
43 41 17 ffvelrnd ( 𝜑 → ( ( 1st𝐹 ) ‘ 𝑍 ) ∈ ( Base ‘ 𝐷 ) )
44 7 simpld ( 𝜑𝐺 ∈ ( 𝐶 Func 𝐷 ) )
45 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐺 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
46 31 44 45 sylancr ( 𝜑 → ( 1st𝐺 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐺 ) )
47 11 39 46 funcf1 ( 𝜑 → ( 1st𝐺 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
48 47 17 ffvelrnd ( 𝜑 → ( ( 1st𝐺 ) ‘ 𝑍 ) ∈ ( Base ‘ 𝐷 ) )
49 11 12 40 33 24 17 funcf2 ( 𝜑 → ( 𝑌 ( 2nd𝐹 ) 𝑍 ) : ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ⟶ ( ( ( 1st𝐹 ) ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) )
50 49 26 ffvelrnd ( 𝜑 → ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝐿 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) )
51 5 36 11 40 17 natcl ( 𝜑 → ( 𝐴𝑍 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑍 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) )
52 1st2ndbr ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐻 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st𝐻 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐻 ) )
53 31 15 52 sylancr ( 𝜑 → ( 1st𝐻 ) ( 𝐶 Func 𝐷 ) ( 2nd𝐻 ) )
54 11 39 53 funcf1 ( 𝜑 → ( 1st𝐻 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) )
55 54 17 ffvelrnd ( 𝜑 → ( ( 1st𝐻 ) ‘ 𝑍 ) ∈ ( Base ‘ 𝐷 ) )
56 5 21 nat1st2nd ( 𝜑𝐵 ∈ ( ⟨ ( 1st𝐺 ) , ( 2nd𝐺 ) ⟩ 𝑁 ⟨ ( 1st𝐻 ) , ( 2nd𝐻 ) ⟩ ) )
57 5 56 11 40 17 natcl ( 𝜑 → ( 𝐵𝑍 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑍 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) )
58 39 40 13 4 42 43 48 50 51 55 57 catass ( 𝜑 → ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑍 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑍 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝐿 ) ) = ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝐴𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝐿 ) ) ) )
59 47 24 ffvelrnd ( 𝜑 → ( ( 1st𝐺 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐷 ) )
60 5 36 11 40 24 natcl ( 𝜑 → ( 𝐴𝑌 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑌 ) ) )
61 11 12 40 46 24 17 funcf2 ( 𝜑 → ( 𝑌 ( 2nd𝐺 ) 𝑍 ) : ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ⟶ ( ( ( 1st𝐺 ) ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) )
62 61 26 ffvelrnd ( 𝜑 → ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) )
63 39 40 13 4 42 59 48 60 62 55 57 catass ( 𝜑 → ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑌 ) ) = ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑍 ) ) ( 𝐴𝑌 ) ) ) )
64 38 58 63 3eqtr4d ( 𝜑 → ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑍 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑍 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝐿 ) ) = ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑌 ) ) )
65 64 oveq1d ( 𝜑 → ( ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑍 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑍 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝐿 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ) = ( ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑌 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ) )
66 41 16 ffvelrnd ( 𝜑 → ( ( 1st𝐹 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐷 ) )
67 11 12 40 33 16 24 funcf2 ( 𝜑 → ( 𝑋 ( 2nd𝐹 ) 𝑌 ) : ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ⟶ ( ( ( 1st𝐹 ) ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑌 ) ) )
68 67 25 ffvelrnd ( 𝜑 → ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑋 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑌 ) ) )
69 39 40 13 4 43 48 55 51 57 catcocl ( 𝜑 → ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑍 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑍 ) ) ∈ ( ( ( 1st𝐹 ) ‘ 𝑍 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) )
70 39 40 13 4 66 42 43 68 50 55 69 catass ( 𝜑 → ( ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑍 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑍 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝐿 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ) = ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑍 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑍 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝐿 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ) ) )
71 39 40 13 4 59 48 55 62 57 catcocl ( 𝜑 → ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ) ∈ ( ( ( 1st𝐺 ) ‘ 𝑌 ) ( Hom ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) )
72 39 40 13 4 66 42 59 68 60 55 71 catass ( 𝜑 → ( ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑌 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ) = ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐺 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝐴𝑌 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑌 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ) ) )
73 65 70 72 3eqtr3d ( 𝜑 → ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑍 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑍 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( ( 𝑌 ( 2nd𝐹 ) 𝑍 ) ‘ 𝐿 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐹 ) ‘ 𝑍 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ) ) = ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐺 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝐴𝑌 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑌 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ) ) )
74 35 73 eqtrd ( 𝜑 → ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑍 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( 𝐴𝑍 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑍 ) ‘ ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑍 ) 𝐾 ) ) ) = ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐺 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝐴𝑌 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑌 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ) ) )
75 28 30 74 3eqtrd ( 𝜑 → ( ( 𝐵 ( ⟨ 𝐹 , 𝐺 ⟩ ( comp ‘ 𝑄 ) 𝐻 ) 𝐴 ) ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑍 ) 𝐾 ) ) = ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐺 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝐴𝑌 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑌 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ) ) )
76 eqid ( 𝑄 ×c 𝐶 ) = ( 𝑄 ×c 𝐶 )
77 2 fucbas ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑄 )
78 2 5 fuchom 𝑁 = ( Hom ‘ 𝑄 )
79 eqid ( comp ‘ ( 𝑄 ×c 𝐶 ) ) = ( comp ‘ ( 𝑄 ×c 𝐶 ) )
80 76 77 11 78 12 14 16 44 24 19 23 79 15 17 20 25 21 26 xpcco2 ( 𝜑 → ( ⟨ 𝐵 , 𝐿 ⟩ ( ⟨ ⟨ 𝐹 , 𝑋 ⟩ , ⟨ 𝐺 , 𝑌 ⟩ ⟩ ( comp ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝐻 , 𝑍 ⟩ ) ⟨ 𝐴 , 𝐾 ⟩ ) = ⟨ ( 𝐵 ( ⟨ 𝐹 , 𝐺 ⟩ ( comp ‘ 𝑄 ) 𝐻 ) 𝐴 ) , ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑍 ) 𝐾 ) ⟩ )
81 80 fveq2d ( 𝜑 → ( ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) ‘ ( ⟨ 𝐵 , 𝐿 ⟩ ( ⟨ ⟨ 𝐹 , 𝑋 ⟩ , ⟨ 𝐺 , 𝑌 ⟩ ⟩ ( comp ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝐻 , 𝑍 ⟩ ) ⟨ 𝐴 , 𝐾 ⟩ ) ) = ( ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) ‘ ⟨ ( 𝐵 ( ⟨ 𝐹 , 𝐺 ⟩ ( comp ‘ 𝑄 ) 𝐻 ) 𝐴 ) , ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑍 ) 𝐾 ) ⟩ ) )
82 df-ov ( ( 𝐵 ( ⟨ 𝐹 , 𝐺 ⟩ ( comp ‘ 𝑄 ) 𝐻 ) 𝐴 ) ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑍 ) 𝐾 ) ) = ( ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) ‘ ⟨ ( 𝐵 ( ⟨ 𝐹 , 𝐺 ⟩ ( comp ‘ 𝑄 ) 𝐻 ) 𝐴 ) , ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑍 ) 𝐾 ) ⟩ )
83 81 82 eqtr4di ( 𝜑 → ( ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) ‘ ( ⟨ 𝐵 , 𝐿 ⟩ ( ⟨ ⟨ 𝐹 , 𝑋 ⟩ , ⟨ 𝐺 , 𝑌 ⟩ ⟩ ( comp ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝐻 , 𝑍 ⟩ ) ⟨ 𝐴 , 𝐾 ⟩ ) ) = ( ( 𝐵 ( ⟨ 𝐹 , 𝐺 ⟩ ( comp ‘ 𝑄 ) 𝐻 ) 𝐴 ) ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) ( 𝐿 ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑍 ) 𝐾 ) ) )
84 df-ov ( 𝐹 ( 1st𝐸 ) 𝑋 ) = ( ( 1st𝐸 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ )
85 1 3 4 11 14 16 evlf1 ( 𝜑 → ( 𝐹 ( 1st𝐸 ) 𝑋 ) = ( ( 1st𝐹 ) ‘ 𝑋 ) )
86 84 85 eqtr3id ( 𝜑 → ( ( 1st𝐸 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) = ( ( 1st𝐹 ) ‘ 𝑋 ) )
87 df-ov ( 𝐺 ( 1st𝐸 ) 𝑌 ) = ( ( 1st𝐸 ) ‘ ⟨ 𝐺 , 𝑌 ⟩ )
88 1 3 4 11 44 24 evlf1 ( 𝜑 → ( 𝐺 ( 1st𝐸 ) 𝑌 ) = ( ( 1st𝐺 ) ‘ 𝑌 ) )
89 87 88 eqtr3id ( 𝜑 → ( ( 1st𝐸 ) ‘ ⟨ 𝐺 , 𝑌 ⟩ ) = ( ( 1st𝐺 ) ‘ 𝑌 ) )
90 86 89 opeq12d ( 𝜑 → ⟨ ( ( 1st𝐸 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) , ( ( 1st𝐸 ) ‘ ⟨ 𝐺 , 𝑌 ⟩ ) ⟩ = ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐺 ) ‘ 𝑌 ) ⟩ )
91 df-ov ( 𝐻 ( 1st𝐸 ) 𝑍 ) = ( ( 1st𝐸 ) ‘ ⟨ 𝐻 , 𝑍 ⟩ )
92 1 3 4 11 15 17 evlf1 ( 𝜑 → ( 𝐻 ( 1st𝐸 ) 𝑍 ) = ( ( 1st𝐻 ) ‘ 𝑍 ) )
93 91 92 eqtr3id ( 𝜑 → ( ( 1st𝐸 ) ‘ ⟨ 𝐻 , 𝑍 ⟩ ) = ( ( 1st𝐻 ) ‘ 𝑍 ) )
94 90 93 oveq12d ( 𝜑 → ( ⟨ ( ( 1st𝐸 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) , ( ( 1st𝐸 ) ‘ ⟨ 𝐺 , 𝑌 ⟩ ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ ⟨ 𝐻 , 𝑍 ⟩ ) ) = ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐺 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) )
95 df-ov ( 𝐵 ( ⟨ 𝐺 , 𝑌 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) 𝐿 ) = ( ( ⟨ 𝐺 , 𝑌 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) ‘ ⟨ 𝐵 , 𝐿 ⟩ )
96 eqid ( ⟨ 𝐺 , 𝑌 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) = ( ⟨ 𝐺 , 𝑌 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ )
97 1 3 4 11 12 13 5 44 15 24 17 96 21 26 evlf2val ( 𝜑 → ( 𝐵 ( ⟨ 𝐺 , 𝑌 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) 𝐿 ) = ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ) )
98 95 97 eqtr3id ( 𝜑 → ( ( ⟨ 𝐺 , 𝑌 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) ‘ ⟨ 𝐵 , 𝐿 ⟩ ) = ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ) )
99 df-ov ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑌 ⟩ ) 𝐾 ) = ( ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑌 ⟩ ) ‘ ⟨ 𝐴 , 𝐾 ⟩ )
100 eqid ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑌 ⟩ ) = ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑌 ⟩ )
101 1 3 4 11 12 13 5 14 44 16 24 100 20 25 evlf2val ( 𝜑 → ( 𝐴 ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑌 ⟩ ) 𝐾 ) = ( ( 𝐴𝑌 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑌 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ) )
102 99 101 eqtr3id ( 𝜑 → ( ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑌 ⟩ ) ‘ ⟨ 𝐴 , 𝐾 ⟩ ) = ( ( 𝐴𝑌 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑌 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ) )
103 94 98 102 oveq123d ( 𝜑 → ( ( ( ⟨ 𝐺 , 𝑌 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) ‘ ⟨ 𝐵 , 𝐿 ⟩ ) ( ⟨ ( ( 1st𝐸 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) , ( ( 1st𝐸 ) ‘ ⟨ 𝐺 , 𝑌 ⟩ ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ ⟨ 𝐻 , 𝑍 ⟩ ) ) ( ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑌 ⟩ ) ‘ ⟨ 𝐴 , 𝐾 ⟩ ) ) = ( ( ( 𝐵𝑍 ) ( ⟨ ( ( 1st𝐺 ) ‘ 𝑌 ) , ( ( 1st𝐺 ) ‘ 𝑍 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝑌 ( 2nd𝐺 ) 𝑍 ) ‘ 𝐿 ) ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐺 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐻 ) ‘ 𝑍 ) ) ( ( 𝐴𝑌 ) ( ⟨ ( ( 1st𝐹 ) ‘ 𝑋 ) , ( ( 1st𝐹 ) ‘ 𝑌 ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐺 ) ‘ 𝑌 ) ) ( ( 𝑋 ( 2nd𝐹 ) 𝑌 ) ‘ 𝐾 ) ) ) )
104 75 83 103 3eqtr4d ( 𝜑 → ( ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) ‘ ( ⟨ 𝐵 , 𝐿 ⟩ ( ⟨ ⟨ 𝐹 , 𝑋 ⟩ , ⟨ 𝐺 , 𝑌 ⟩ ⟩ ( comp ‘ ( 𝑄 ×c 𝐶 ) ) ⟨ 𝐻 , 𝑍 ⟩ ) ⟨ 𝐴 , 𝐾 ⟩ ) ) = ( ( ( ⟨ 𝐺 , 𝑌 ⟩ ( 2nd𝐸 ) ⟨ 𝐻 , 𝑍 ⟩ ) ‘ ⟨ 𝐵 , 𝐿 ⟩ ) ( ⟨ ( ( 1st𝐸 ) ‘ ⟨ 𝐹 , 𝑋 ⟩ ) , ( ( 1st𝐸 ) ‘ ⟨ 𝐺 , 𝑌 ⟩ ) ⟩ ( comp ‘ 𝐷 ) ( ( 1st𝐸 ) ‘ ⟨ 𝐻 , 𝑍 ⟩ ) ) ( ( ⟨ 𝐹 , 𝑋 ⟩ ( 2nd𝐸 ) ⟨ 𝐺 , 𝑌 ⟩ ) ‘ ⟨ 𝐴 , 𝐾 ⟩ ) ) )