| Step |
Hyp |
Ref |
Expression |
| 1 |
|
natrcl.1 |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
| 2 |
|
natixp.2 |
⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) |
| 3 |
|
natixp.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
natixp.j |
⊢ 𝐽 = ( Hom ‘ 𝐷 ) |
| 5 |
|
natcl.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
1 2 3 4
|
natixp |
⊢ ( 𝜑 → 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐾 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑋 ) ) |
| 9 |
7 8
|
oveq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐾 ‘ 𝑋 ) ) ) |
| 10 |
9
|
fvixp |
⊢ ( ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐾 ‘ 𝑥 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑋 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐾 ‘ 𝑋 ) ) ) |
| 11 |
6 5 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝐽 ( 𝐾 ‘ 𝑋 ) ) ) |