Metamath Proof Explorer


Theorem natcl

Description: A component of a natural transformation is a morphism. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses natrcl.1 N=CNatD
natixp.2 φAFGNKL
natixp.b B=BaseC
natixp.j J=HomD
natcl.1 φXB
Assertion natcl φAXFXJKX

Proof

Step Hyp Ref Expression
1 natrcl.1 N=CNatD
2 natixp.2 φAFGNKL
3 natixp.b B=BaseC
4 natixp.j J=HomD
5 natcl.1 φXB
6 1 2 3 4 natixp φAxBFxJKx
7 fveq2 x=XFx=FX
8 fveq2 x=XKx=KX
9 7 8 oveq12d x=XFxJKx=FXJKX
10 9 fvixp AxBFxJKxXBAXFXJKX
11 6 5 10 syl2anc φAXFXJKX