Description: A natural transformation is a function on the objects of C . (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natrcl.1 | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| natixp.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) | ||
| natixp.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| Assertion | natfn | ⊢ ( 𝜑 → 𝐴 Fn 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 2 | natixp.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 𝐹 , 𝐺 〉 𝑁 〈 𝐾 , 𝐿 〉 ) ) | |
| 3 | natixp.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 4 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 5 | 1 2 3 4 | natixp | ⊢ ( 𝜑 → 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) ) |
| 6 | ixpfn | ⊢ ( 𝐴 ∈ X 𝑥 ∈ 𝐵 ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐾 ‘ 𝑥 ) ) → 𝐴 Fn 𝐵 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → 𝐴 Fn 𝐵 ) |