| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fuccocl.q |
|- Q = ( C FuncCat D ) |
| 2 |
|
fuccocl.n |
|- N = ( C Nat D ) |
| 3 |
|
fuccocl.x |
|- .xb = ( comp ` Q ) |
| 4 |
|
fuccocl.r |
|- ( ph -> R e. ( F N G ) ) |
| 5 |
|
fuccocl.s |
|- ( ph -> S e. ( G N H ) ) |
| 6 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 7 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 8 |
1 2 6 7 3 4 5
|
fucco |
|- ( ph -> ( S ( <. F , G >. .xb H ) R ) = ( x e. ( Base ` C ) |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) ) |
| 9 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 10 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 11 |
2
|
natrcl |
|- ( R e. ( F N G ) -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
| 12 |
4 11
|
syl |
|- ( ph -> ( F e. ( C Func D ) /\ G e. ( C Func D ) ) ) |
| 13 |
12
|
simpld |
|- ( ph -> F e. ( C Func D ) ) |
| 14 |
|
funcrcl |
|- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
| 15 |
13 14
|
syl |
|- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 16 |
15
|
simprd |
|- ( ph -> D e. Cat ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> D e. Cat ) |
| 18 |
|
relfunc |
|- Rel ( C Func D ) |
| 19 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 20 |
18 13 19
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 21 |
6 9 20
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 22 |
21
|
ffvelcdmda |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 23 |
2
|
natrcl |
|- ( S e. ( G N H ) -> ( G e. ( C Func D ) /\ H e. ( C Func D ) ) ) |
| 24 |
5 23
|
syl |
|- ( ph -> ( G e. ( C Func D ) /\ H e. ( C Func D ) ) ) |
| 25 |
24
|
simpld |
|- ( ph -> G e. ( C Func D ) ) |
| 26 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 27 |
18 25 26
|
sylancr |
|- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 28 |
6 9 27
|
funcf1 |
|- ( ph -> ( 1st ` G ) : ( Base ` C ) --> ( Base ` D ) ) |
| 29 |
28
|
ffvelcdmda |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` G ) ` x ) e. ( Base ` D ) ) |
| 30 |
24
|
simprd |
|- ( ph -> H e. ( C Func D ) ) |
| 31 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ H e. ( C Func D ) ) -> ( 1st ` H ) ( C Func D ) ( 2nd ` H ) ) |
| 32 |
18 30 31
|
sylancr |
|- ( ph -> ( 1st ` H ) ( C Func D ) ( 2nd ` H ) ) |
| 33 |
6 9 32
|
funcf1 |
|- ( ph -> ( 1st ` H ) : ( Base ` C ) --> ( Base ` D ) ) |
| 34 |
33
|
ffvelcdmda |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` H ) ` x ) e. ( Base ` D ) ) |
| 35 |
2 4
|
nat1st2nd |
|- ( ph -> R e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> R e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 37 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
| 38 |
2 36 6 10 37
|
natcl |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( R ` x ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) ) |
| 39 |
2 5
|
nat1st2nd |
|- ( ph -> S e. ( <. ( 1st ` G ) , ( 2nd ` G ) >. N <. ( 1st ` H ) , ( 2nd ` H ) >. ) ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> S e. ( <. ( 1st ` G ) , ( 2nd ` G ) >. N <. ( 1st ` H ) , ( 2nd ` H ) >. ) ) |
| 41 |
2 40 6 10 37
|
natcl |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( S ` x ) e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) |
| 42 |
9 10 7 17 22 29 34 38 41
|
catcocl |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) |
| 43 |
42
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` C ) ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) |
| 44 |
|
fvex |
|- ( Base ` C ) e. _V |
| 45 |
|
mptelixpg |
|- ( ( Base ` C ) e. _V -> ( ( x e. ( Base ` C ) |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) <-> A. x e. ( Base ` C ) ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) ) |
| 46 |
44 45
|
ax-mp |
|- ( ( x e. ( Base ` C ) |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) <-> A. x e. ( Base ` C ) ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) |
| 47 |
43 46
|
sylibr |
|- ( ph -> ( x e. ( Base ` C ) |-> ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) |
| 48 |
8 47
|
eqeltrd |
|- ( ph -> ( S ( <. F , G >. .xb H ) R ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) |
| 49 |
16
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> D e. Cat ) |
| 50 |
21
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 51 |
|
simpr1 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> x e. ( Base ` C ) ) |
| 52 |
50 51
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 53 |
|
simpr2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> y e. ( Base ` C ) ) |
| 54 |
50 53
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 55 |
28
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` G ) : ( Base ` C ) --> ( Base ` D ) ) |
| 56 |
55 53
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` G ) ` y ) e. ( Base ` D ) ) |
| 57 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 58 |
20
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 59 |
6 57 10 58 51 53
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 60 |
|
simpr3 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> f e. ( x ( Hom ` C ) y ) ) |
| 61 |
59 60
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( x ( 2nd ` F ) y ) ` f ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 62 |
35
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> R e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
| 63 |
2 62 6 10 53
|
natcl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( R ` y ) e. ( ( ( 1st ` F ) ` y ) ( Hom ` D ) ( ( 1st ` G ) ` y ) ) ) |
| 64 |
33
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` H ) : ( Base ` C ) --> ( Base ` D ) ) |
| 65 |
64 53
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` H ) ` y ) e. ( Base ` D ) ) |
| 66 |
39
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> S e. ( <. ( 1st ` G ) , ( 2nd ` G ) >. N <. ( 1st ` H ) , ( 2nd ` H ) >. ) ) |
| 67 |
2 66 6 10 53
|
natcl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( S ` y ) e. ( ( ( 1st ` G ) ` y ) ( Hom ` D ) ( ( 1st ` H ) ` y ) ) ) |
| 68 |
9 10 7 49 52 54 56 61 63 65 67
|
catass |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( S ` y ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` y ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( S ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( R ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) ) |
| 69 |
2 62 6 57 7 51 53 60
|
nati |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( R ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` G ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( R ` x ) ) ) |
| 70 |
69
|
oveq2d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( S ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( R ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) = ( ( S ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( ( x ( 2nd ` G ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( R ` x ) ) ) ) |
| 71 |
55 51
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` G ) ` x ) e. ( Base ` D ) ) |
| 72 |
2 62 6 10 51
|
natcl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( R ` x ) e. ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` x ) ) ) |
| 73 |
27
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
| 74 |
6 57 10 73 51 53
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( x ( 2nd ` G ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` y ) ) ) |
| 75 |
74 60
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( x ( 2nd ` G ) y ) ` f ) e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` G ) ` y ) ) ) |
| 76 |
9 10 7 49 52 71 56 72 75 65 67
|
catass |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( S ` y ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` G ) y ) ` f ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` x ) ) = ( ( S ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( ( x ( 2nd ` G ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( R ` x ) ) ) ) |
| 77 |
2 66 6 57 7 51 53 60
|
nati |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( S ` y ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` G ) y ) ` f ) ) = ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( S ` x ) ) ) |
| 78 |
77
|
oveq1d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( S ` y ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` G ) y ) ` f ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` x ) ) = ( ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( S ` x ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` x ) ) ) |
| 79 |
70 76 78
|
3eqtr2d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( S ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( R ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` G ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) = ( ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( S ` x ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` x ) ) ) |
| 80 |
64 51
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( 1st ` H ) ` x ) e. ( Base ` D ) ) |
| 81 |
2 66 6 10 51
|
natcl |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( S ` x ) e. ( ( ( 1st ` G ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) ) |
| 82 |
32
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( 1st ` H ) ( C Func D ) ( 2nd ` H ) ) |
| 83 |
6 57 10 82 51 53
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( x ( 2nd ` H ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` H ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` y ) ) ) |
| 84 |
83 60
|
ffvelcdmd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( x ( 2nd ` H ) y ) ` f ) e. ( ( ( 1st ` H ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` y ) ) ) |
| 85 |
9 10 7 49 52 71 80 72 81 65 84
|
catass |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` G ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( S ` x ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` x ) ) = ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) ) |
| 86 |
68 79 85
|
3eqtrd |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( S ` y ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` y ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) ) |
| 87 |
4
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> R e. ( F N G ) ) |
| 88 |
5
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> S e. ( G N H ) ) |
| 89 |
1 2 6 7 3 87 88 53
|
fuccoval |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( S ( <. F , G >. .xb H ) R ) ` y ) = ( ( S ` y ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` y ) ) ) |
| 90 |
89
|
oveq1d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( S ( <. F , G >. .xb H ) R ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( S ` y ) ( <. ( ( 1st ` F ) ` y ) , ( ( 1st ` G ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( R ` y ) ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
| 91 |
1 2 6 7 3 87 88 51
|
fuccoval |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( S ( <. F , G >. .xb H ) R ) ` x ) = ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) |
| 92 |
91
|
oveq2d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( S ( <. F , G >. .xb H ) R ) ` x ) ) = ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( S ` x ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` x ) ) ( R ` x ) ) ) ) |
| 93 |
86 90 92
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) /\ f e. ( x ( Hom ` C ) y ) ) ) -> ( ( ( S ( <. F , G >. .xb H ) R ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( S ( <. F , G >. .xb H ) R ) ` x ) ) ) |
| 94 |
93
|
ralrimivvva |
|- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) ( ( ( S ( <. F , G >. .xb H ) R ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( S ( <. F , G >. .xb H ) R ) ` x ) ) ) |
| 95 |
2 6 57 10 7 13 30
|
isnat2 |
|- ( ph -> ( ( S ( <. F , G >. .xb H ) R ) e. ( F N H ) <-> ( ( S ( <. F , G >. .xb H ) R ) e. X_ x e. ( Base ` C ) ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` H ) ` x ) ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. f e. ( x ( Hom ` C ) y ) ( ( ( S ( <. F , G >. .xb H ) R ) ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) = ( ( ( x ( 2nd ` H ) y ) ` f ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` H ) ` x ) >. ( comp ` D ) ( ( 1st ` H ) ` y ) ) ( ( S ( <. F , G >. .xb H ) R ) ` x ) ) ) ) ) |
| 96 |
48 94 95
|
mpbir2and |
|- ( ph -> ( S ( <. F , G >. .xb H ) R ) e. ( F N H ) ) |