Step |
Hyp |
Ref |
Expression |
1 |
|
natfval.1 |
|- N = ( C Nat D ) |
2 |
|
natfval.b |
|- B = ( Base ` C ) |
3 |
|
natfval.h |
|- H = ( Hom ` C ) |
4 |
|
natfval.j |
|- J = ( Hom ` D ) |
5 |
|
natfval.o |
|- .x. = ( comp ` D ) |
6 |
|
isnat2.f |
|- ( ph -> F e. ( C Func D ) ) |
7 |
|
isnat2.g |
|- ( ph -> G e. ( C Func D ) ) |
8 |
|
relfunc |
|- Rel ( C Func D ) |
9 |
|
1st2nd |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
10 |
8 6 9
|
sylancr |
|- ( ph -> F = <. ( 1st ` F ) , ( 2nd ` F ) >. ) |
11 |
|
1st2nd |
|- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
12 |
8 7 11
|
sylancr |
|- ( ph -> G = <. ( 1st ` G ) , ( 2nd ` G ) >. ) |
13 |
10 12
|
oveq12d |
|- ( ph -> ( F N G ) = ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) |
14 |
13
|
eleq2d |
|- ( ph -> ( A e. ( F N G ) <-> A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) ) ) |
15 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
16 |
8 6 15
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
17 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ G e. ( C Func D ) ) -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
18 |
8 7 17
|
sylancr |
|- ( ph -> ( 1st ` G ) ( C Func D ) ( 2nd ` G ) ) |
19 |
1 2 3 4 5 16 18
|
isnat |
|- ( ph -> ( A e. ( <. ( 1st ` F ) , ( 2nd ` F ) >. N <. ( 1st ` G ) , ( 2nd ` G ) >. ) <-> ( A e. X_ x e. B ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) /\ A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. .x. ( ( 1st ` G ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` h ) ) = ( ( ( x ( 2nd ` G ) y ) ` h ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` G ) ` y ) ) ( A ` x ) ) ) ) ) |
20 |
14 19
|
bitrd |
|- ( ph -> ( A e. ( F N G ) <-> ( A e. X_ x e. B ( ( ( 1st ` F ) ` x ) J ( ( 1st ` G ) ` x ) ) /\ A. x e. B A. y e. B A. h e. ( x H y ) ( ( A ` y ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. .x. ( ( 1st ` G ) ` y ) ) ( ( x ( 2nd ` F ) y ) ` h ) ) = ( ( ( x ( 2nd ` G ) y ) ` h ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. .x. ( ( 1st ` G ) ` y ) ) ( A ` x ) ) ) ) ) |