Metamath Proof Explorer


Theorem isnat2

Description: Property of being a natural transformation. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses natfval.1 N=CNatD
natfval.b B=BaseC
natfval.h H=HomC
natfval.j J=HomD
natfval.o ·˙=compD
isnat2.f φFCFuncD
isnat2.g φGCFuncD
Assertion isnat2 φAFNGAxB1stFxJ1stGxxByBhxHyAy1stFx1stFy·˙1stGyx2ndFyh=x2ndGyh1stFx1stGx·˙1stGyAx

Proof

Step Hyp Ref Expression
1 natfval.1 N=CNatD
2 natfval.b B=BaseC
3 natfval.h H=HomC
4 natfval.j J=HomD
5 natfval.o ·˙=compD
6 isnat2.f φFCFuncD
7 isnat2.g φGCFuncD
8 relfunc RelCFuncD
9 1st2nd RelCFuncDFCFuncDF=1stF2ndF
10 8 6 9 sylancr φF=1stF2ndF
11 1st2nd RelCFuncDGCFuncDG=1stG2ndG
12 8 7 11 sylancr φG=1stG2ndG
13 10 12 oveq12d φFNG=1stF2ndFN1stG2ndG
14 13 eleq2d φAFNGA1stF2ndFN1stG2ndG
15 1st2ndbr RelCFuncDFCFuncD1stFCFuncD2ndF
16 8 6 15 sylancr φ1stFCFuncD2ndF
17 1st2ndbr RelCFuncDGCFuncD1stGCFuncD2ndG
18 8 7 17 sylancr φ1stGCFuncD2ndG
19 1 2 3 4 5 16 18 isnat φA1stF2ndFN1stG2ndGAxB1stFxJ1stGxxByBhxHyAy1stFx1stFy·˙1stGyx2ndFyh=x2ndGyh1stFx1stGx·˙1stGyAx
20 14 19 bitrd φAFNGAxB1stFxJ1stGxxByBhxHyAy1stFx1stFy·˙1stGyx2ndFyh=x2ndGyh1stFx1stGx·˙1stGyAx