Metamath Proof Explorer


Theorem relfunc

Description: The set of functors is a relation. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion relfunc RelDFuncE

Proof

Step Hyp Ref Expression
1 df-func Func=tCat,uCatfg|[˙Baset/b]˙f:bBaseugzb×bf1stzHomuf2ndzHomtzxbxgxIdtx=IdufxybzbmxHomtynyHomtzxgznxycomptzm=ygznfxfycompufzxgym
2 1 relmpoopab RelDFuncE