| Step |
Hyp |
Ref |
Expression |
| 1 |
|
natrcl.1 |
|
| 2 |
|
natixp.2 |
|
| 3 |
|
natixp.b |
|
| 4 |
|
nati.h |
|
| 5 |
|
nati.o |
|
| 6 |
|
nati.x |
|
| 7 |
|
nati.y |
|
| 8 |
|
nati.r |
|
| 9 |
|
eqid |
|
| 10 |
1
|
natrcl |
|
| 11 |
2 10
|
syl |
|
| 12 |
11
|
simpld |
|
| 13 |
|
df-br |
|
| 14 |
12 13
|
sylibr |
|
| 15 |
11
|
simprd |
|
| 16 |
|
df-br |
|
| 17 |
15 16
|
sylibr |
|
| 18 |
1 3 4 9 5 14 17
|
isnat |
|
| 19 |
2 18
|
mpbid |
|
| 20 |
19
|
simprd |
|
| 21 |
7
|
adantr |
|
| 22 |
8
|
ad2antrr |
|
| 23 |
|
simplr |
|
| 24 |
|
simpr |
|
| 25 |
23 24
|
oveq12d |
|
| 26 |
22 25
|
eleqtrrd |
|
| 27 |
|
simpllr |
|
| 28 |
27
|
fveq2d |
|
| 29 |
|
simplr |
|
| 30 |
29
|
fveq2d |
|
| 31 |
28 30
|
opeq12d |
|
| 32 |
29
|
fveq2d |
|
| 33 |
31 32
|
oveq12d |
|
| 34 |
29
|
fveq2d |
|
| 35 |
27 29
|
oveq12d |
|
| 36 |
|
simpr |
|
| 37 |
35 36
|
fveq12d |
|
| 38 |
33 34 37
|
oveq123d |
|
| 39 |
27
|
fveq2d |
|
| 40 |
28 39
|
opeq12d |
|
| 41 |
40 32
|
oveq12d |
|
| 42 |
27 29
|
oveq12d |
|
| 43 |
42 36
|
fveq12d |
|
| 44 |
27
|
fveq2d |
|
| 45 |
41 43 44
|
oveq123d |
|
| 46 |
38 45
|
eqeq12d |
|
| 47 |
26 46
|
rspcdv |
|
| 48 |
21 47
|
rspcimdv |
|
| 49 |
6 48
|
rspcimdv |
|
| 50 |
20 49
|
mpd |
|