Step |
Hyp |
Ref |
Expression |
1 |
|
prfcl.p |
|
2 |
|
prfcl.t |
|
3 |
|
prfcl.c |
|
4 |
|
prfcl.d |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
1 5 6 3 4
|
prfval |
|
8 |
|
fvex |
|
9 |
8
|
mptex |
|
10 |
8 8
|
mpoex |
|
11 |
9 10
|
op1std |
|
12 |
7 11
|
syl |
|
13 |
9 10
|
op2ndd |
|
14 |
7 13
|
syl |
|
15 |
12 14
|
opeq12d |
|
16 |
7 15
|
eqtr4d |
|
17 |
|
eqid |
|
18 |
|
eqid |
|
19 |
2 17 18
|
xpcbas |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
|
eqid |
|
25 |
|
funcrcl |
|
26 |
3 25
|
syl |
|
27 |
26
|
simpld |
|
28 |
26
|
simprd |
|
29 |
|
funcrcl |
|
30 |
4 29
|
syl |
|
31 |
30
|
simprd |
|
32 |
2 28 31
|
xpccat |
|
33 |
|
relfunc |
|
34 |
|
1st2ndbr |
|
35 |
33 3 34
|
sylancr |
|
36 |
5 17 35
|
funcf1 |
|
37 |
36
|
ffvelrnda |
|
38 |
|
relfunc |
|
39 |
|
1st2ndbr |
|
40 |
38 4 39
|
sylancr |
|
41 |
5 18 40
|
funcf1 |
|
42 |
41
|
ffvelrnda |
|
43 |
37 42
|
opelxpd |
|
44 |
12 43
|
fmpt3d |
|
45 |
|
eqid |
|
46 |
|
ovex |
|
47 |
46
|
mptex |
|
48 |
45 47
|
fnmpoi |
|
49 |
14
|
fneq1d |
|
50 |
48 49
|
mpbiri |
|
51 |
14
|
oveqd |
|
52 |
45
|
ovmpt4g |
|
53 |
47 52
|
mp3an3 |
|
54 |
51 53
|
sylan9eq |
|
55 |
|
eqid |
|
56 |
35
|
adantr |
|
57 |
|
simprl |
|
58 |
|
simprr |
|
59 |
5 6 55 56 57 58
|
funcf2 |
|
60 |
59
|
ffvelrnda |
|
61 |
|
eqid |
|
62 |
40
|
adantr |
|
63 |
5 6 61 62 57 58
|
funcf2 |
|
64 |
63
|
ffvelrnda |
|
65 |
60 64
|
opelxpd |
|
66 |
3
|
adantr |
|
67 |
4
|
adantr |
|
68 |
1 5 6 66 67 57
|
prf1 |
|
69 |
1 5 6 66 67 58
|
prf1 |
|
70 |
68 69
|
oveq12d |
|
71 |
37
|
adantrr |
|
72 |
42
|
adantrr |
|
73 |
36
|
ffvelrnda |
|
74 |
73
|
adantrl |
|
75 |
41
|
ffvelrnda |
|
76 |
75
|
adantrl |
|
77 |
2 17 18 55 61 71 72 74 76 20
|
xpchom2 |
|
78 |
70 77
|
eqtrd |
|
79 |
78
|
adantr |
|
80 |
65 79
|
eleqtrrd |
|
81 |
54 80
|
fmpt3d |
|
82 |
|
eqid |
|
83 |
35
|
adantr |
|
84 |
|
simpr |
|
85 |
5 21 82 83 84
|
funcid |
|
86 |
|
eqid |
|
87 |
40
|
adantr |
|
88 |
5 21 86 87 84
|
funcid |
|
89 |
85 88
|
opeq12d |
|
90 |
3
|
adantr |
|
91 |
4
|
adantr |
|
92 |
27
|
adantr |
|
93 |
5 6 21 92 84
|
catidcl |
|
94 |
1 5 6 90 91 84 84 93
|
prf2 |
|
95 |
1 5 6 90 91 84
|
prf1 |
|
96 |
95
|
fveq2d |
|
97 |
28
|
adantr |
|
98 |
31
|
adantr |
|
99 |
2 97 98 17 18 82 86 22 37 42
|
xpcid |
|
100 |
96 99
|
eqtrd |
|
101 |
89 94 100
|
3eqtr4d |
|
102 |
|
eqid |
|
103 |
35
|
3ad2ant1 |
|
104 |
|
simp21 |
|
105 |
|
simp22 |
|
106 |
|
simp23 |
|
107 |
|
simp3l |
|
108 |
|
simp3r |
|
109 |
5 6 23 102 103 104 105 106 107 108
|
funcco |
|
110 |
|
eqid |
|
111 |
4
|
3ad2ant1 |
|
112 |
38 111 39
|
sylancr |
|
113 |
5 6 23 110 112 104 105 106 107 108
|
funcco |
|
114 |
109 113
|
opeq12d |
|
115 |
3
|
3ad2ant1 |
|
116 |
27
|
3ad2ant1 |
|
117 |
5 6 23 116 104 105 106 107 108
|
catcocl |
|
118 |
1 5 6 115 111 104 106 117
|
prf2 |
|
119 |
1 5 6 115 111 104
|
prf1 |
|
120 |
1 5 6 115 111 105
|
prf1 |
|
121 |
119 120
|
opeq12d |
|
122 |
1 5 6 115 111 106
|
prf1 |
|
123 |
121 122
|
oveq12d |
|
124 |
1 5 6 115 111 105 106 108
|
prf2 |
|
125 |
1 5 6 115 111 104 105 107
|
prf2 |
|
126 |
123 124 125
|
oveq123d |
|
127 |
36
|
3ad2ant1 |
|
128 |
127 104
|
ffvelrnd |
|
129 |
41
|
3ad2ant1 |
|
130 |
129 104
|
ffvelrnd |
|
131 |
127 105
|
ffvelrnd |
|
132 |
129 105
|
ffvelrnd |
|
133 |
127 106
|
ffvelrnd |
|
134 |
129 106
|
ffvelrnd |
|
135 |
5 6 55 103 104 105
|
funcf2 |
|
136 |
135 107
|
ffvelrnd |
|
137 |
5 6 61 112 104 105
|
funcf2 |
|
138 |
137 107
|
ffvelrnd |
|
139 |
5 6 55 103 105 106
|
funcf2 |
|
140 |
139 108
|
ffvelrnd |
|
141 |
5 6 61 112 105 106
|
funcf2 |
|
142 |
141 108
|
ffvelrnd |
|
143 |
2 17 18 55 61 128 130 131 132 102 110 24 133 134 136 138 140 142
|
xpcco2 |
|
144 |
126 143
|
eqtrd |
|
145 |
114 118 144
|
3eqtr4d |
|
146 |
5 19 6 20 21 22 23 24 27 32 44 50 81 101 145
|
isfuncd |
|
147 |
|
df-br |
|
148 |
146 147
|
sylib |
|
149 |
16 148
|
eqeltrd |
|