Database
BASIC CATEGORY THEORY
Categorical constructions
Product of categories
prf2
Next ⟩
prfcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
prf2
Description:
Value of the pairing functor on morphisms.
(Contributed by
Mario Carneiro
, 12-Jan-2017)
Ref
Expression
Hypotheses
prfval.k
⊢
P
=
F
〈,〉
F
G
prfval.b
⊢
B
=
Base
C
prfval.h
⊢
H
=
Hom
⁡
C
prfval.c
⊢
φ
→
F
∈
C
Func
D
prfval.d
⊢
φ
→
G
∈
C
Func
E
prf1.x
⊢
φ
→
X
∈
B
prf2.y
⊢
φ
→
Y
∈
B
prf2.k
⊢
φ
→
K
∈
X
H
Y
Assertion
prf2
⊢
φ
→
X
2
nd
⁡
P
Y
⁡
K
=
X
2
nd
⁡
F
Y
⁡
K
X
2
nd
⁡
G
Y
⁡
K
Proof
Step
Hyp
Ref
Expression
1
prfval.k
⊢
P
=
F
〈,〉
F
G
2
prfval.b
⊢
B
=
Base
C
3
prfval.h
⊢
H
=
Hom
⁡
C
4
prfval.c
⊢
φ
→
F
∈
C
Func
D
5
prfval.d
⊢
φ
→
G
∈
C
Func
E
6
prf1.x
⊢
φ
→
X
∈
B
7
prf2.y
⊢
φ
→
Y
∈
B
8
prf2.k
⊢
φ
→
K
∈
X
H
Y
9
1
2
3
4
5
6
7
prf2fval
⊢
φ
→
X
2
nd
⁡
P
Y
=
h
∈
X
H
Y
⟼
X
2
nd
⁡
F
Y
⁡
h
X
2
nd
⁡
G
Y
⁡
h
10
simpr
⊢
φ
∧
h
=
K
→
h
=
K
11
10
fveq2d
⊢
φ
∧
h
=
K
→
X
2
nd
⁡
F
Y
⁡
h
=
X
2
nd
⁡
F
Y
⁡
K
12
10
fveq2d
⊢
φ
∧
h
=
K
→
X
2
nd
⁡
G
Y
⁡
h
=
X
2
nd
⁡
G
Y
⁡
K
13
11
12
opeq12d
⊢
φ
∧
h
=
K
→
X
2
nd
⁡
F
Y
⁡
h
X
2
nd
⁡
G
Y
⁡
h
=
X
2
nd
⁡
F
Y
⁡
K
X
2
nd
⁡
G
Y
⁡
K
14
opex
⊢
X
2
nd
⁡
F
Y
⁡
K
X
2
nd
⁡
G
Y
⁡
K
∈
V
15
14
a1i
⊢
φ
→
X
2
nd
⁡
F
Y
⁡
K
X
2
nd
⁡
G
Y
⁡
K
∈
V
16
9
13
8
15
fvmptd
⊢
φ
→
X
2
nd
⁡
P
Y
⁡
K
=
X
2
nd
⁡
F
Y
⁡
K
X
2
nd
⁡
G
Y
⁡
K