Metamath Proof Explorer


Theorem prf2

Description: Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses prfval.k
|- P = ( F pairF G )
prfval.b
|- B = ( Base ` C )
prfval.h
|- H = ( Hom ` C )
prfval.c
|- ( ph -> F e. ( C Func D ) )
prfval.d
|- ( ph -> G e. ( C Func E ) )
prf1.x
|- ( ph -> X e. B )
prf2.y
|- ( ph -> Y e. B )
prf2.k
|- ( ph -> K e. ( X H Y ) )
Assertion prf2
|- ( ph -> ( ( X ( 2nd ` P ) Y ) ` K ) = <. ( ( X ( 2nd ` F ) Y ) ` K ) , ( ( X ( 2nd ` G ) Y ) ` K ) >. )

Proof

Step Hyp Ref Expression
1 prfval.k
 |-  P = ( F pairF G )
2 prfval.b
 |-  B = ( Base ` C )
3 prfval.h
 |-  H = ( Hom ` C )
4 prfval.c
 |-  ( ph -> F e. ( C Func D ) )
5 prfval.d
 |-  ( ph -> G e. ( C Func E ) )
6 prf1.x
 |-  ( ph -> X e. B )
7 prf2.y
 |-  ( ph -> Y e. B )
8 prf2.k
 |-  ( ph -> K e. ( X H Y ) )
9 1 2 3 4 5 6 7 prf2fval
 |-  ( ph -> ( X ( 2nd ` P ) Y ) = ( h e. ( X H Y ) |-> <. ( ( X ( 2nd ` F ) Y ) ` h ) , ( ( X ( 2nd ` G ) Y ) ` h ) >. ) )
10 simpr
 |-  ( ( ph /\ h = K ) -> h = K )
11 10 fveq2d
 |-  ( ( ph /\ h = K ) -> ( ( X ( 2nd ` F ) Y ) ` h ) = ( ( X ( 2nd ` F ) Y ) ` K ) )
12 10 fveq2d
 |-  ( ( ph /\ h = K ) -> ( ( X ( 2nd ` G ) Y ) ` h ) = ( ( X ( 2nd ` G ) Y ) ` K ) )
13 11 12 opeq12d
 |-  ( ( ph /\ h = K ) -> <. ( ( X ( 2nd ` F ) Y ) ` h ) , ( ( X ( 2nd ` G ) Y ) ` h ) >. = <. ( ( X ( 2nd ` F ) Y ) ` K ) , ( ( X ( 2nd ` G ) Y ) ` K ) >. )
14 opex
 |-  <. ( ( X ( 2nd ` F ) Y ) ` K ) , ( ( X ( 2nd ` G ) Y ) ` K ) >. e. _V
15 14 a1i
 |-  ( ph -> <. ( ( X ( 2nd ` F ) Y ) ` K ) , ( ( X ( 2nd ` G ) Y ) ` K ) >. e. _V )
16 9 13 8 15 fvmptd
 |-  ( ph -> ( ( X ( 2nd ` P ) Y ) ` K ) = <. ( ( X ( 2nd ` F ) Y ) ` K ) , ( ( X ( 2nd ` G ) Y ) ` K ) >. )