Step |
Hyp |
Ref |
Expression |
1 |
|
prfval.k |
|- P = ( F pairF G ) |
2 |
|
prfval.b |
|- B = ( Base ` C ) |
3 |
|
prfval.h |
|- H = ( Hom ` C ) |
4 |
|
prfval.c |
|- ( ph -> F e. ( C Func D ) ) |
5 |
|
prfval.d |
|- ( ph -> G e. ( C Func E ) ) |
6 |
|
prf1.x |
|- ( ph -> X e. B ) |
7 |
|
prf2.y |
|- ( ph -> Y e. B ) |
8 |
|
prf2.k |
|- ( ph -> K e. ( X H Y ) ) |
9 |
1 2 3 4 5 6 7
|
prf2fval |
|- ( ph -> ( X ( 2nd ` P ) Y ) = ( h e. ( X H Y ) |-> <. ( ( X ( 2nd ` F ) Y ) ` h ) , ( ( X ( 2nd ` G ) Y ) ` h ) >. ) ) |
10 |
|
simpr |
|- ( ( ph /\ h = K ) -> h = K ) |
11 |
10
|
fveq2d |
|- ( ( ph /\ h = K ) -> ( ( X ( 2nd ` F ) Y ) ` h ) = ( ( X ( 2nd ` F ) Y ) ` K ) ) |
12 |
10
|
fveq2d |
|- ( ( ph /\ h = K ) -> ( ( X ( 2nd ` G ) Y ) ` h ) = ( ( X ( 2nd ` G ) Y ) ` K ) ) |
13 |
11 12
|
opeq12d |
|- ( ( ph /\ h = K ) -> <. ( ( X ( 2nd ` F ) Y ) ` h ) , ( ( X ( 2nd ` G ) Y ) ` h ) >. = <. ( ( X ( 2nd ` F ) Y ) ` K ) , ( ( X ( 2nd ` G ) Y ) ` K ) >. ) |
14 |
|
opex |
|- <. ( ( X ( 2nd ` F ) Y ) ` K ) , ( ( X ( 2nd ` G ) Y ) ` K ) >. e. _V |
15 |
14
|
a1i |
|- ( ph -> <. ( ( X ( 2nd ` F ) Y ) ` K ) , ( ( X ( 2nd ` G ) Y ) ` K ) >. e. _V ) |
16 |
9 13 8 15
|
fvmptd |
|- ( ph -> ( ( X ( 2nd ` P ) Y ) ` K ) = <. ( ( X ( 2nd ` F ) Y ) ` K ) , ( ( X ( 2nd ` G ) Y ) ` K ) >. ) |