Step |
Hyp |
Ref |
Expression |
1 |
|
prfval.k |
|- P = ( F pairF G ) |
2 |
|
prfval.b |
|- B = ( Base ` C ) |
3 |
|
prfval.h |
|- H = ( Hom ` C ) |
4 |
|
prfval.c |
|- ( ph -> F e. ( C Func D ) ) |
5 |
|
prfval.d |
|- ( ph -> G e. ( C Func E ) ) |
6 |
|
prf1.x |
|- ( ph -> X e. B ) |
7 |
|
prf2.y |
|- ( ph -> Y e. B ) |
8 |
1 2 3 4 5
|
prfval |
|- ( ph -> P = <. ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. ) |
9 |
2
|
fvexi |
|- B e. _V |
10 |
9
|
mptex |
|- ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) e. _V |
11 |
9 9
|
mpoex |
|- ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) e. _V |
12 |
10 11
|
op2ndd |
|- ( P = <. ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. -> ( 2nd ` P ) = ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) ) |
13 |
8 12
|
syl |
|- ( ph -> ( 2nd ` P ) = ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) ) |
14 |
|
simprl |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X ) |
15 |
|
simprr |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y ) |
16 |
14 15
|
oveq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x H y ) = ( X H Y ) ) |
17 |
14 15
|
oveq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x ( 2nd ` F ) y ) = ( X ( 2nd ` F ) Y ) ) |
18 |
17
|
fveq1d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( x ( 2nd ` F ) y ) ` h ) = ( ( X ( 2nd ` F ) Y ) ` h ) ) |
19 |
14 15
|
oveq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x ( 2nd ` G ) y ) = ( X ( 2nd ` G ) Y ) ) |
20 |
19
|
fveq1d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( x ( 2nd ` G ) y ) ` h ) = ( ( X ( 2nd ` G ) Y ) ` h ) ) |
21 |
18 20
|
opeq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. = <. ( ( X ( 2nd ` F ) Y ) ` h ) , ( ( X ( 2nd ` G ) Y ) ` h ) >. ) |
22 |
16 21
|
mpteq12dv |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) = ( h e. ( X H Y ) |-> <. ( ( X ( 2nd ` F ) Y ) ` h ) , ( ( X ( 2nd ` G ) Y ) ` h ) >. ) ) |
23 |
|
ovex |
|- ( X H Y ) e. _V |
24 |
23
|
mptex |
|- ( h e. ( X H Y ) |-> <. ( ( X ( 2nd ` F ) Y ) ` h ) , ( ( X ( 2nd ` G ) Y ) ` h ) >. ) e. _V |
25 |
24
|
a1i |
|- ( ph -> ( h e. ( X H Y ) |-> <. ( ( X ( 2nd ` F ) Y ) ` h ) , ( ( X ( 2nd ` G ) Y ) ` h ) >. ) e. _V ) |
26 |
13 22 6 7 25
|
ovmpod |
|- ( ph -> ( X ( 2nd ` P ) Y ) = ( h e. ( X H Y ) |-> <. ( ( X ( 2nd ` F ) Y ) ` h ) , ( ( X ( 2nd ` G ) Y ) ` h ) >. ) ) |