| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prfval.k |
|- P = ( F pairF G ) |
| 2 |
|
prfval.b |
|- B = ( Base ` C ) |
| 3 |
|
prfval.h |
|- H = ( Hom ` C ) |
| 4 |
|
prfval.c |
|- ( ph -> F e. ( C Func D ) ) |
| 5 |
|
prfval.d |
|- ( ph -> G e. ( C Func E ) ) |
| 6 |
|
df-prf |
|- pairF = ( f e. _V , g e. _V |-> [_ dom ( 1st ` f ) / b ]_ <. ( x e. b |-> <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ) , ( x e. b , y e. b |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) >. ) |
| 7 |
6
|
a1i |
|- ( ph -> pairF = ( f e. _V , g e. _V |-> [_ dom ( 1st ` f ) / b ]_ <. ( x e. b |-> <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ) , ( x e. b , y e. b |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) >. ) ) |
| 8 |
|
fvex |
|- ( 1st ` f ) e. _V |
| 9 |
8
|
dmex |
|- dom ( 1st ` f ) e. _V |
| 10 |
9
|
a1i |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> dom ( 1st ` f ) e. _V ) |
| 11 |
|
simprl |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> f = F ) |
| 12 |
11
|
fveq2d |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> ( 1st ` f ) = ( 1st ` F ) ) |
| 13 |
12
|
dmeqd |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> dom ( 1st ` f ) = dom ( 1st ` F ) ) |
| 14 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 15 |
|
relfunc |
|- Rel ( C Func D ) |
| 16 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 17 |
15 4 16
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 18 |
2 14 17
|
funcf1 |
|- ( ph -> ( 1st ` F ) : B --> ( Base ` D ) ) |
| 19 |
18
|
fdmd |
|- ( ph -> dom ( 1st ` F ) = B ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> dom ( 1st ` F ) = B ) |
| 21 |
13 20
|
eqtrd |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> dom ( 1st ` f ) = B ) |
| 22 |
|
simpr |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> b = B ) |
| 23 |
|
simplrl |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> f = F ) |
| 24 |
23
|
fveq2d |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( 1st ` f ) = ( 1st ` F ) ) |
| 25 |
24
|
fveq1d |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( ( 1st ` f ) ` x ) = ( ( 1st ` F ) ` x ) ) |
| 26 |
|
simplrr |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> g = G ) |
| 27 |
26
|
fveq2d |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( 1st ` g ) = ( 1st ` G ) ) |
| 28 |
27
|
fveq1d |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( ( 1st ` g ) ` x ) = ( ( 1st ` G ) ` x ) ) |
| 29 |
25 28
|
opeq12d |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. = <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) |
| 30 |
22 29
|
mpteq12dv |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( x e. b |-> <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ) = ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) ) |
| 31 |
|
eqidd |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) = ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) |
| 32 |
22 22 31
|
mpoeq123dv |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( x e. b , y e. b |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) = ( x e. B , y e. B |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) ) |
| 33 |
23
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> f = F ) |
| 34 |
33
|
fveq2d |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( 2nd ` f ) = ( 2nd ` F ) ) |
| 35 |
34
|
oveqd |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( x ( 2nd ` f ) y ) = ( x ( 2nd ` F ) y ) ) |
| 36 |
35
|
dmeqd |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> dom ( x ( 2nd ` f ) y ) = dom ( x ( 2nd ` F ) y ) ) |
| 37 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 38 |
17
|
ad4antr |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 39 |
|
simplr |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> x e. B ) |
| 40 |
|
simpr |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> y e. B ) |
| 41 |
2 3 37 38 39 40
|
funcf2 |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( x ( 2nd ` F ) y ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 42 |
41
|
fdmd |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> dom ( x ( 2nd ` F ) y ) = ( x H y ) ) |
| 43 |
36 42
|
eqtrd |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> dom ( x ( 2nd ` f ) y ) = ( x H y ) ) |
| 44 |
35
|
fveq1d |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( ( x ( 2nd ` f ) y ) ` h ) = ( ( x ( 2nd ` F ) y ) ` h ) ) |
| 45 |
26
|
ad2antrr |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> g = G ) |
| 46 |
45
|
fveq2d |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( 2nd ` g ) = ( 2nd ` G ) ) |
| 47 |
46
|
oveqd |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( x ( 2nd ` g ) y ) = ( x ( 2nd ` G ) y ) ) |
| 48 |
47
|
fveq1d |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( ( x ( 2nd ` g ) y ) ` h ) = ( ( x ( 2nd ` G ) y ) ` h ) ) |
| 49 |
44 48
|
opeq12d |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. = <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) |
| 50 |
43 49
|
mpteq12dv |
|- ( ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B ) /\ y e. B ) -> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) = ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) |
| 51 |
50
|
3impa |
|- ( ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) /\ x e. B /\ y e. B ) -> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) = ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) |
| 52 |
51
|
mpoeq3dva |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( x e. B , y e. B |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) = ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) ) |
| 53 |
32 52
|
eqtrd |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> ( x e. b , y e. b |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) = ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) ) |
| 54 |
30 53
|
opeq12d |
|- ( ( ( ph /\ ( f = F /\ g = G ) ) /\ b = B ) -> <. ( x e. b |-> <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ) , ( x e. b , y e. b |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) >. = <. ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. ) |
| 55 |
10 21 54
|
csbied2 |
|- ( ( ph /\ ( f = F /\ g = G ) ) -> [_ dom ( 1st ` f ) / b ]_ <. ( x e. b |-> <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ) , ( x e. b , y e. b |-> ( h e. dom ( x ( 2nd ` f ) y ) |-> <. ( ( x ( 2nd ` f ) y ) ` h ) , ( ( x ( 2nd ` g ) y ) ` h ) >. ) ) >. = <. ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. ) |
| 56 |
4
|
elexd |
|- ( ph -> F e. _V ) |
| 57 |
5
|
elexd |
|- ( ph -> G e. _V ) |
| 58 |
|
opex |
|- <. ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. e. _V |
| 59 |
58
|
a1i |
|- ( ph -> <. ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. e. _V ) |
| 60 |
7 55 56 57 59
|
ovmpod |
|- ( ph -> ( F pairF G ) = <. ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. ) |
| 61 |
1 60
|
eqtrid |
|- ( ph -> P = <. ( x e. B |-> <. ( ( 1st ` F ) ` x ) , ( ( 1st ` G ) ` x ) >. ) , ( x e. B , y e. B |-> ( h e. ( x H y ) |-> <. ( ( x ( 2nd ` F ) y ) ` h ) , ( ( x ( 2nd ` G ) y ) ` h ) >. ) ) >. ) |