Metamath Proof Explorer


Theorem prfval

Description: Value of the pairing functor. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses prfval.k P = F ⟨,⟩ F G
prfval.b B = Base C
prfval.h H = Hom C
prfval.c φ F C Func D
prfval.d φ G C Func E
Assertion prfval φ P = x B 1 st F x 1 st G x x B , y B h x H y x 2 nd F y h x 2 nd G y h

Proof

Step Hyp Ref Expression
1 prfval.k P = F ⟨,⟩ F G
2 prfval.b B = Base C
3 prfval.h H = Hom C
4 prfval.c φ F C Func D
5 prfval.d φ G C Func E
6 df-prf ⟨,⟩ F = f V , g V dom 1 st f / b x b 1 st f x 1 st g x x b , y b h dom x 2 nd f y x 2 nd f y h x 2 nd g y h
7 6 a1i φ ⟨,⟩ F = f V , g V dom 1 st f / b x b 1 st f x 1 st g x x b , y b h dom x 2 nd f y x 2 nd f y h x 2 nd g y h
8 fvex 1 st f V
9 8 dmex dom 1 st f V
10 9 a1i φ f = F g = G dom 1 st f V
11 simprl φ f = F g = G f = F
12 11 fveq2d φ f = F g = G 1 st f = 1 st F
13 12 dmeqd φ f = F g = G dom 1 st f = dom 1 st F
14 eqid Base D = Base D
15 relfunc Rel C Func D
16 1st2ndbr Rel C Func D F C Func D 1 st F C Func D 2 nd F
17 15 4 16 sylancr φ 1 st F C Func D 2 nd F
18 2 14 17 funcf1 φ 1 st F : B Base D
19 18 fdmd φ dom 1 st F = B
20 19 adantr φ f = F g = G dom 1 st F = B
21 13 20 eqtrd φ f = F g = G dom 1 st f = B
22 simpr φ f = F g = G b = B b = B
23 simplrl φ f = F g = G b = B f = F
24 23 fveq2d φ f = F g = G b = B 1 st f = 1 st F
25 24 fveq1d φ f = F g = G b = B 1 st f x = 1 st F x
26 simplrr φ f = F g = G b = B g = G
27 26 fveq2d φ f = F g = G b = B 1 st g = 1 st G
28 27 fveq1d φ f = F g = G b = B 1 st g x = 1 st G x
29 25 28 opeq12d φ f = F g = G b = B 1 st f x 1 st g x = 1 st F x 1 st G x
30 22 29 mpteq12dv φ f = F g = G b = B x b 1 st f x 1 st g x = x B 1 st F x 1 st G x
31 eqidd φ f = F g = G b = B h dom x 2 nd f y x 2 nd f y h x 2 nd g y h = h dom x 2 nd f y x 2 nd f y h x 2 nd g y h
32 22 22 31 mpoeq123dv φ f = F g = G b = B x b , y b h dom x 2 nd f y x 2 nd f y h x 2 nd g y h = x B , y B h dom x 2 nd f y x 2 nd f y h x 2 nd g y h
33 23 ad2antrr φ f = F g = G b = B x B y B f = F
34 33 fveq2d φ f = F g = G b = B x B y B 2 nd f = 2 nd F
35 34 oveqd φ f = F g = G b = B x B y B x 2 nd f y = x 2 nd F y
36 35 dmeqd φ f = F g = G b = B x B y B dom x 2 nd f y = dom x 2 nd F y
37 eqid Hom D = Hom D
38 17 ad4antr φ f = F g = G b = B x B y B 1 st F C Func D 2 nd F
39 simplr φ f = F g = G b = B x B y B x B
40 simpr φ f = F g = G b = B x B y B y B
41 2 3 37 38 39 40 funcf2 φ f = F g = G b = B x B y B x 2 nd F y : x H y 1 st F x Hom D 1 st F y
42 41 fdmd φ f = F g = G b = B x B y B dom x 2 nd F y = x H y
43 36 42 eqtrd φ f = F g = G b = B x B y B dom x 2 nd f y = x H y
44 35 fveq1d φ f = F g = G b = B x B y B x 2 nd f y h = x 2 nd F y h
45 26 ad2antrr φ f = F g = G b = B x B y B g = G
46 45 fveq2d φ f = F g = G b = B x B y B 2 nd g = 2 nd G
47 46 oveqd φ f = F g = G b = B x B y B x 2 nd g y = x 2 nd G y
48 47 fveq1d φ f = F g = G b = B x B y B x 2 nd g y h = x 2 nd G y h
49 44 48 opeq12d φ f = F g = G b = B x B y B x 2 nd f y h x 2 nd g y h = x 2 nd F y h x 2 nd G y h
50 43 49 mpteq12dv φ f = F g = G b = B x B y B h dom x 2 nd f y x 2 nd f y h x 2 nd g y h = h x H y x 2 nd F y h x 2 nd G y h
51 50 3impa φ f = F g = G b = B x B y B h dom x 2 nd f y x 2 nd f y h x 2 nd g y h = h x H y x 2 nd F y h x 2 nd G y h
52 51 mpoeq3dva φ f = F g = G b = B x B , y B h dom x 2 nd f y x 2 nd f y h x 2 nd g y h = x B , y B h x H y x 2 nd F y h x 2 nd G y h
53 32 52 eqtrd φ f = F g = G b = B x b , y b h dom x 2 nd f y x 2 nd f y h x 2 nd g y h = x B , y B h x H y x 2 nd F y h x 2 nd G y h
54 30 53 opeq12d φ f = F g = G b = B x b 1 st f x 1 st g x x b , y b h dom x 2 nd f y x 2 nd f y h x 2 nd g y h = x B 1 st F x 1 st G x x B , y B h x H y x 2 nd F y h x 2 nd G y h
55 10 21 54 csbied2 φ f = F g = G dom 1 st f / b x b 1 st f x 1 st g x x b , y b h dom x 2 nd f y x 2 nd f y h x 2 nd g y h = x B 1 st F x 1 st G x x B , y B h x H y x 2 nd F y h x 2 nd G y h
56 4 elexd φ F V
57 5 elexd φ G V
58 opex x B 1 st F x 1 st G x x B , y B h x H y x 2 nd F y h x 2 nd G y h V
59 58 a1i φ x B 1 st F x 1 st G x x B , y B h x H y x 2 nd F y h x 2 nd G y h V
60 7 55 56 57 59 ovmpod φ F ⟨,⟩ F G = x B 1 st F x 1 st G x x B , y B h x H y x 2 nd F y h x 2 nd G y h
61 1 60 syl5eq φ P = x B 1 st F x 1 st G x x B , y B h x H y x 2 nd F y h x 2 nd G y h