Metamath Proof Explorer


Theorem prfcl

Description: The pairing of functors F : C --> D and G : C --> D is a functor <. F , G >. : C --> ( D X. E ) . (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Hypotheses prfcl.p ⊒ 𝑃 = ( 𝐹 ⟨,⟩F 𝐺 )
prfcl.t ⊒ 𝑇 = ( 𝐷 Γ—c 𝐸 )
prfcl.c ⊒ ( πœ‘ β†’ 𝐹 ∈ ( 𝐢 Func 𝐷 ) )
prfcl.d ⊒ ( πœ‘ β†’ 𝐺 ∈ ( 𝐢 Func 𝐸 ) )
Assertion prfcl ( πœ‘ β†’ 𝑃 ∈ ( 𝐢 Func 𝑇 ) )

Proof

Step Hyp Ref Expression
1 prfcl.p ⊒ 𝑃 = ( 𝐹 ⟨,⟩F 𝐺 )
2 prfcl.t ⊒ 𝑇 = ( 𝐷 Γ—c 𝐸 )
3 prfcl.c ⊒ ( πœ‘ β†’ 𝐹 ∈ ( 𝐢 Func 𝐷 ) )
4 prfcl.d ⊒ ( πœ‘ β†’ 𝐺 ∈ ( 𝐢 Func 𝐸 ) )
5 eqid ⊒ ( Base β€˜ 𝐢 ) = ( Base β€˜ 𝐢 )
6 eqid ⊒ ( Hom β€˜ 𝐢 ) = ( Hom β€˜ 𝐢 )
7 1 5 6 3 4 prfval ⊒ ( πœ‘ β†’ 𝑃 = ⟨ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ ) , ( π‘₯ ∈ ( Base β€˜ 𝐢 ) , 𝑦 ∈ ( Base β€˜ 𝐢 ) ↦ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) ) ⟩ )
8 fvex ⊒ ( Base β€˜ 𝐢 ) ∈ V
9 8 mptex ⊒ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ ) ∈ V
10 8 8 mpoex ⊒ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) , 𝑦 ∈ ( Base β€˜ 𝐢 ) ↦ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) ) ∈ V
11 9 10 op1std ⊒ ( 𝑃 = ⟨ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ ) , ( π‘₯ ∈ ( Base β€˜ 𝐢 ) , 𝑦 ∈ ( Base β€˜ 𝐢 ) ↦ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) ) ⟩ β†’ ( 1st β€˜ 𝑃 ) = ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ ) )
12 7 11 syl ⊒ ( πœ‘ β†’ ( 1st β€˜ 𝑃 ) = ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ ) )
13 9 10 op2ndd ⊒ ( 𝑃 = ⟨ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ ) , ( π‘₯ ∈ ( Base β€˜ 𝐢 ) , 𝑦 ∈ ( Base β€˜ 𝐢 ) ↦ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) ) ⟩ β†’ ( 2nd β€˜ 𝑃 ) = ( π‘₯ ∈ ( Base β€˜ 𝐢 ) , 𝑦 ∈ ( Base β€˜ 𝐢 ) ↦ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) ) )
14 7 13 syl ⊒ ( πœ‘ β†’ ( 2nd β€˜ 𝑃 ) = ( π‘₯ ∈ ( Base β€˜ 𝐢 ) , 𝑦 ∈ ( Base β€˜ 𝐢 ) ↦ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) ) )
15 12 14 opeq12d ⊒ ( πœ‘ β†’ ⟨ ( 1st β€˜ 𝑃 ) , ( 2nd β€˜ 𝑃 ) ⟩ = ⟨ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ↦ ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ ) , ( π‘₯ ∈ ( Base β€˜ 𝐢 ) , 𝑦 ∈ ( Base β€˜ 𝐢 ) ↦ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) ) ⟩ )
16 7 15 eqtr4d ⊒ ( πœ‘ β†’ 𝑃 = ⟨ ( 1st β€˜ 𝑃 ) , ( 2nd β€˜ 𝑃 ) ⟩ )
17 eqid ⊒ ( Base β€˜ 𝐷 ) = ( Base β€˜ 𝐷 )
18 eqid ⊒ ( Base β€˜ 𝐸 ) = ( Base β€˜ 𝐸 )
19 2 17 18 xpcbas ⊒ ( ( Base β€˜ 𝐷 ) Γ— ( Base β€˜ 𝐸 ) ) = ( Base β€˜ 𝑇 )
20 eqid ⊒ ( Hom β€˜ 𝑇 ) = ( Hom β€˜ 𝑇 )
21 eqid ⊒ ( Id β€˜ 𝐢 ) = ( Id β€˜ 𝐢 )
22 eqid ⊒ ( Id β€˜ 𝑇 ) = ( Id β€˜ 𝑇 )
23 eqid ⊒ ( comp β€˜ 𝐢 ) = ( comp β€˜ 𝐢 )
24 eqid ⊒ ( comp β€˜ 𝑇 ) = ( comp β€˜ 𝑇 )
25 funcrcl ⊒ ( 𝐹 ∈ ( 𝐢 Func 𝐷 ) β†’ ( 𝐢 ∈ Cat ∧ 𝐷 ∈ Cat ) )
26 3 25 syl ⊒ ( πœ‘ β†’ ( 𝐢 ∈ Cat ∧ 𝐷 ∈ Cat ) )
27 26 simpld ⊒ ( πœ‘ β†’ 𝐢 ∈ Cat )
28 26 simprd ⊒ ( πœ‘ β†’ 𝐷 ∈ Cat )
29 funcrcl ⊒ ( 𝐺 ∈ ( 𝐢 Func 𝐸 ) β†’ ( 𝐢 ∈ Cat ∧ 𝐸 ∈ Cat ) )
30 4 29 syl ⊒ ( πœ‘ β†’ ( 𝐢 ∈ Cat ∧ 𝐸 ∈ Cat ) )
31 30 simprd ⊒ ( πœ‘ β†’ 𝐸 ∈ Cat )
32 2 28 31 xpccat ⊒ ( πœ‘ β†’ 𝑇 ∈ Cat )
33 relfunc ⊒ Rel ( 𝐢 Func 𝐷 )
34 1st2ndbr ⊒ ( ( Rel ( 𝐢 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐢 Func 𝐷 ) ) β†’ ( 1st β€˜ 𝐹 ) ( 𝐢 Func 𝐷 ) ( 2nd β€˜ 𝐹 ) )
35 33 3 34 sylancr ⊒ ( πœ‘ β†’ ( 1st β€˜ 𝐹 ) ( 𝐢 Func 𝐷 ) ( 2nd β€˜ 𝐹 ) )
36 5 17 35 funcf1 ⊒ ( πœ‘ β†’ ( 1st β€˜ 𝐹 ) : ( Base β€˜ 𝐢 ) ⟢ ( Base β€˜ 𝐷 ) )
37 36 ffvelcdmda ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) ∈ ( Base β€˜ 𝐷 ) )
38 relfunc ⊒ Rel ( 𝐢 Func 𝐸 )
39 1st2ndbr ⊒ ( ( Rel ( 𝐢 Func 𝐸 ) ∧ 𝐺 ∈ ( 𝐢 Func 𝐸 ) ) β†’ ( 1st β€˜ 𝐺 ) ( 𝐢 Func 𝐸 ) ( 2nd β€˜ 𝐺 ) )
40 38 4 39 sylancr ⊒ ( πœ‘ β†’ ( 1st β€˜ 𝐺 ) ( 𝐢 Func 𝐸 ) ( 2nd β€˜ 𝐺 ) )
41 5 18 40 funcf1 ⊒ ( πœ‘ β†’ ( 1st β€˜ 𝐺 ) : ( Base β€˜ 𝐢 ) ⟢ ( Base β€˜ 𝐸 ) )
42 41 ffvelcdmda ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ∈ ( Base β€˜ 𝐸 ) )
43 37 42 opelxpd ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ ∈ ( ( Base β€˜ 𝐷 ) Γ— ( Base β€˜ 𝐸 ) ) )
44 12 43 fmpt3d ⊒ ( πœ‘ β†’ ( 1st β€˜ 𝑃 ) : ( Base β€˜ 𝐢 ) ⟢ ( ( Base β€˜ 𝐷 ) Γ— ( Base β€˜ 𝐸 ) ) )
45 eqid ⊒ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) , 𝑦 ∈ ( Base β€˜ 𝐢 ) ↦ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) ) = ( π‘₯ ∈ ( Base β€˜ 𝐢 ) , 𝑦 ∈ ( Base β€˜ 𝐢 ) ↦ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) )
46 ovex ⊒ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∈ V
47 46 mptex ⊒ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) ∈ V
48 45 47 fnmpoi ⊒ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) , 𝑦 ∈ ( Base β€˜ 𝐢 ) ↦ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) ) Fn ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐢 ) )
49 14 fneq1d ⊒ ( πœ‘ β†’ ( ( 2nd β€˜ 𝑃 ) Fn ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐢 ) ) ↔ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) , 𝑦 ∈ ( Base β€˜ 𝐢 ) ↦ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) ) Fn ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐢 ) ) ) )
50 48 49 mpbiri ⊒ ( πœ‘ β†’ ( 2nd β€˜ 𝑃 ) Fn ( ( Base β€˜ 𝐢 ) Γ— ( Base β€˜ 𝐢 ) ) )
51 14 oveqd ⊒ ( πœ‘ β†’ ( π‘₯ ( 2nd β€˜ 𝑃 ) 𝑦 ) = ( π‘₯ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) , 𝑦 ∈ ( Base β€˜ 𝐢 ) ↦ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) ) 𝑦 ) )
52 45 ovmpt4g ⊒ ( ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) ∈ V ) β†’ ( π‘₯ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) , 𝑦 ∈ ( Base β€˜ 𝐢 ) ↦ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) ) 𝑦 ) = ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) )
53 47 52 mp3an3 ⊒ ( ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) β†’ ( π‘₯ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) , 𝑦 ∈ ( Base β€˜ 𝐢 ) ↦ ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) ) 𝑦 ) = ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) )
54 51 53 sylan9eq ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( π‘₯ ( 2nd β€˜ 𝑃 ) 𝑦 ) = ( β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ↦ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ) )
55 eqid ⊒ ( Hom β€˜ 𝐷 ) = ( Hom β€˜ 𝐷 )
56 35 adantr ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( 1st β€˜ 𝐹 ) ( 𝐢 Func 𝐷 ) ( 2nd β€˜ 𝐹 ) )
57 simprl ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ π‘₯ ∈ ( Base β€˜ 𝐢 ) )
58 simprr ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ 𝑦 ∈ ( Base β€˜ 𝐢 ) )
59 5 6 55 56 57 58 funcf2 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) : ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ⟢ ( ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ) )
60 59 ffvelcdmda ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) ∈ ( ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ) )
61 eqid ⊒ ( Hom β€˜ 𝐸 ) = ( Hom β€˜ 𝐸 )
62 40 adantr ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( 1st β€˜ 𝐺 ) ( 𝐢 Func 𝐸 ) ( 2nd β€˜ 𝐺 ) )
63 5 6 61 62 57 58 funcf2 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) : ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ⟢ ( ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ) )
64 63 ffvelcdmda ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ∈ ( ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ) )
65 60 64 opelxpd ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ) β†’ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ∈ ( ( ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ) Γ— ( ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ) ) )
66 3 adantr ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ 𝐹 ∈ ( 𝐢 Func 𝐷 ) )
67 4 adantr ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ 𝐺 ∈ ( 𝐢 Func 𝐸 ) )
68 1 5 6 66 67 57 prf1 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) = ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ )
69 1 5 6 66 67 58 prf1 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( 1st β€˜ 𝑃 ) β€˜ 𝑦 ) = ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ⟩ )
70 68 69 oveq12d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) ( Hom β€˜ 𝑇 ) ( ( 1st β€˜ 𝑃 ) β€˜ 𝑦 ) ) = ( ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ ( Hom β€˜ 𝑇 ) ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ⟩ ) )
71 37 adantrr ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) ∈ ( Base β€˜ 𝐷 ) )
72 42 adantrr ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ∈ ( Base β€˜ 𝐸 ) )
73 36 ffvelcdmda ⊒ ( ( πœ‘ ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) β†’ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ∈ ( Base β€˜ 𝐷 ) )
74 73 adantrl ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ∈ ( Base β€˜ 𝐷 ) )
75 41 ffvelcdmda ⊒ ( ( πœ‘ ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) β†’ ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ∈ ( Base β€˜ 𝐸 ) )
76 75 adantrl ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ∈ ( Base β€˜ 𝐸 ) )
77 2 17 18 55 61 71 72 74 76 20 xpchom2 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ ( Hom β€˜ 𝑇 ) ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ⟩ ) = ( ( ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ) Γ— ( ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ) ) )
78 70 77 eqtrd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) ( Hom β€˜ 𝑇 ) ( ( 1st β€˜ 𝑃 ) β€˜ 𝑦 ) ) = ( ( ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ) Γ— ( ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ) ) )
79 78 adantr ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ) β†’ ( ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) ( Hom β€˜ 𝑇 ) ( ( 1st β€˜ 𝑃 ) β€˜ 𝑦 ) ) = ( ( ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ) Γ— ( ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ) ) )
80 65 79 eleqtrrd ⊒ ( ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) ∧ β„Ž ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ) β†’ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ β„Ž ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ β„Ž ) ⟩ ∈ ( ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) ( Hom β€˜ 𝑇 ) ( ( 1st β€˜ 𝑃 ) β€˜ 𝑦 ) ) )
81 54 80 fmpt3d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ) ) β†’ ( π‘₯ ( 2nd β€˜ 𝑃 ) 𝑦 ) : ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ⟢ ( ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) ( Hom β€˜ 𝑇 ) ( ( 1st β€˜ 𝑃 ) β€˜ 𝑦 ) ) )
82 eqid ⊒ ( Id β€˜ 𝐷 ) = ( Id β€˜ 𝐷 )
83 35 adantr ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ( 1st β€˜ 𝐹 ) ( 𝐢 Func 𝐷 ) ( 2nd β€˜ 𝐹 ) )
84 simpr ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ π‘₯ ∈ ( Base β€˜ 𝐢 ) )
85 5 21 82 83 84 funcid ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) π‘₯ ) β€˜ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ) = ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) ) )
86 eqid ⊒ ( Id β€˜ 𝐸 ) = ( Id β€˜ 𝐸 )
87 40 adantr ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ( 1st β€˜ 𝐺 ) ( 𝐢 Func 𝐸 ) ( 2nd β€˜ 𝐺 ) )
88 5 21 86 87 84 funcid ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝐺 ) π‘₯ ) β€˜ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ) = ( ( Id β€˜ 𝐸 ) β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) )
89 85 88 opeq12d ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) π‘₯ ) β€˜ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) π‘₯ ) β€˜ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ) ⟩ = ⟨ ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) ) , ( ( Id β€˜ 𝐸 ) β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) ⟩ )
90 3 adantr ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ 𝐹 ∈ ( 𝐢 Func 𝐷 ) )
91 4 adantr ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ 𝐺 ∈ ( 𝐢 Func 𝐸 ) )
92 27 adantr ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ 𝐢 ∈ Cat )
93 5 6 21 92 84 catidcl ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) π‘₯ ) )
94 1 5 6 90 91 84 84 93 prf2 ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝑃 ) π‘₯ ) β€˜ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ) = ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) π‘₯ ) β€˜ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) π‘₯ ) β€˜ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ) ⟩ )
95 1 5 6 90 91 84 prf1 ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) = ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ )
96 95 fveq2d ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ( ( Id β€˜ 𝑇 ) β€˜ ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) ) = ( ( Id β€˜ 𝑇 ) β€˜ ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ ) )
97 28 adantr ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ 𝐷 ∈ Cat )
98 31 adantr ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ 𝐸 ∈ Cat )
99 2 97 98 17 18 82 86 22 37 42 xpcid ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ( ( Id β€˜ 𝑇 ) β€˜ ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ ) = ⟨ ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) ) , ( ( Id β€˜ 𝐸 ) β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) ⟩ )
100 96 99 eqtrd ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ( ( Id β€˜ 𝑇 ) β€˜ ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) ) = ⟨ ( ( Id β€˜ 𝐷 ) β€˜ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) ) , ( ( Id β€˜ 𝐸 ) β€˜ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ) ⟩ )
101 89 94 100 3eqtr4d ⊒ ( ( πœ‘ ∧ π‘₯ ∈ ( Base β€˜ 𝐢 ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝑃 ) π‘₯ ) β€˜ ( ( Id β€˜ 𝐢 ) β€˜ π‘₯ ) ) = ( ( Id β€˜ 𝑇 ) β€˜ ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) ) )
102 eqid ⊒ ( comp β€˜ 𝐷 ) = ( comp β€˜ 𝐷 )
103 35 3ad2ant1 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( 1st β€˜ 𝐹 ) ( 𝐢 Func 𝐷 ) ( 2nd β€˜ 𝐹 ) )
104 simp21 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ π‘₯ ∈ ( Base β€˜ 𝐢 ) )
105 simp22 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ 𝑦 ∈ ( Base β€˜ 𝐢 ) )
106 simp23 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ 𝑧 ∈ ( Base β€˜ 𝐢 ) )
107 simp3l ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) )
108 simp3r ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) )
109 5 6 23 102 103 104 105 106 107 108 funcco ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑧 ) β€˜ ( 𝑔 ( ⟨ π‘₯ , 𝑦 ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd β€˜ 𝐹 ) 𝑧 ) β€˜ 𝑔 ) ( ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝐹 ) β€˜ 𝑧 ) ) ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ 𝑓 ) ) )
110 eqid ⊒ ( comp β€˜ 𝐸 ) = ( comp β€˜ 𝐸 )
111 4 3ad2ant1 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ 𝐺 ∈ ( 𝐢 Func 𝐸 ) )
112 38 111 39 sylancr ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( 1st β€˜ 𝐺 ) ( 𝐢 Func 𝐸 ) ( 2nd β€˜ 𝐺 ) )
113 5 6 23 110 112 104 105 106 107 108 funcco ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ ( 𝑔 ( ⟨ π‘₯ , 𝑦 ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ 𝑔 ) ( ⟨ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ⟩ ( comp β€˜ 𝐸 ) ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ) ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ 𝑓 ) ) )
114 109 113 opeq12d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑧 ) β€˜ ( 𝑔 ( ⟨ π‘₯ , 𝑦 ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) 𝑓 ) ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ ( 𝑔 ( ⟨ π‘₯ , 𝑦 ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) 𝑓 ) ) ⟩ = ⟨ ( ( ( 𝑦 ( 2nd β€˜ 𝐹 ) 𝑧 ) β€˜ 𝑔 ) ( ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝐹 ) β€˜ 𝑧 ) ) ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ 𝑓 ) ) , ( ( ( 𝑦 ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ 𝑔 ) ( ⟨ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ⟩ ( comp β€˜ 𝐸 ) ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ) ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ 𝑓 ) ) ⟩ )
115 3 3ad2ant1 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ 𝐹 ∈ ( 𝐢 Func 𝐷 ) )
116 27 3ad2ant1 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ 𝐢 ∈ Cat )
117 5 6 23 116 104 105 106 107 108 catcocl ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( 𝑔 ( ⟨ π‘₯ , 𝑦 ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) 𝑓 ) ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑧 ) )
118 1 5 6 115 111 104 106 117 prf2 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝑃 ) 𝑧 ) β€˜ ( 𝑔 ( ⟨ π‘₯ , 𝑦 ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) 𝑓 ) ) = ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑧 ) β€˜ ( 𝑔 ( ⟨ π‘₯ , 𝑦 ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) 𝑓 ) ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ ( 𝑔 ( ⟨ π‘₯ , 𝑦 ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) 𝑓 ) ) ⟩ )
119 1 5 6 115 111 104 prf1 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) = ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ )
120 1 5 6 115 111 105 prf1 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝑃 ) β€˜ 𝑦 ) = ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ⟩ )
121 119 120 opeq12d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ⟨ ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝑃 ) β€˜ 𝑦 ) ⟩ = ⟨ ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ , ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ⟩ ⟩ )
122 1 5 6 115 111 106 prf1 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝑃 ) β€˜ 𝑧 ) = ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑧 ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ⟩ )
123 121 122 oveq12d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ⟨ ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝑃 ) β€˜ 𝑦 ) ⟩ ( comp β€˜ 𝑇 ) ( ( 1st β€˜ 𝑃 ) β€˜ 𝑧 ) ) = ( ⟨ ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ , ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ⟩ ⟩ ( comp β€˜ 𝑇 ) ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑧 ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ⟩ ) )
124 1 5 6 115 111 105 106 108 prf2 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( 𝑦 ( 2nd β€˜ 𝑃 ) 𝑧 ) β€˜ 𝑔 ) = ⟨ ( ( 𝑦 ( 2nd β€˜ 𝐹 ) 𝑧 ) β€˜ 𝑔 ) , ( ( 𝑦 ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ 𝑔 ) ⟩ )
125 1 5 6 115 111 104 105 107 prf2 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝑃 ) 𝑦 ) β€˜ 𝑓 ) = ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ 𝑓 ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ 𝑓 ) ⟩ )
126 123 124 125 oveq123d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( ( 𝑦 ( 2nd β€˜ 𝑃 ) 𝑧 ) β€˜ 𝑔 ) ( ⟨ ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝑃 ) β€˜ 𝑦 ) ⟩ ( comp β€˜ 𝑇 ) ( ( 1st β€˜ 𝑃 ) β€˜ 𝑧 ) ) ( ( π‘₯ ( 2nd β€˜ 𝑃 ) 𝑦 ) β€˜ 𝑓 ) ) = ( ⟨ ( ( 𝑦 ( 2nd β€˜ 𝐹 ) 𝑧 ) β€˜ 𝑔 ) , ( ( 𝑦 ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ 𝑔 ) ⟩ ( ⟨ ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ , ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ⟩ ⟩ ( comp β€˜ 𝑇 ) ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑧 ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ⟩ ) ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ 𝑓 ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ 𝑓 ) ⟩ ) )
127 36 3ad2ant1 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( 1st β€˜ 𝐹 ) : ( Base β€˜ 𝐢 ) ⟢ ( Base β€˜ 𝐷 ) )
128 127 104 ffvelcdmd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) ∈ ( Base β€˜ 𝐷 ) )
129 41 3ad2ant1 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( 1st β€˜ 𝐺 ) : ( Base β€˜ 𝐢 ) ⟢ ( Base β€˜ 𝐸 ) )
130 129 104 ffvelcdmd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ∈ ( Base β€˜ 𝐸 ) )
131 127 105 ffvelcdmd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ∈ ( Base β€˜ 𝐷 ) )
132 129 105 ffvelcdmd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ∈ ( Base β€˜ 𝐸 ) )
133 127 106 ffvelcdmd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑧 ) ∈ ( Base β€˜ 𝐷 ) )
134 129 106 ffvelcdmd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ∈ ( Base β€˜ 𝐸 ) )
135 5 6 55 103 104 105 funcf2 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) : ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ⟢ ( ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ) )
136 135 107 ffvelcdmd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ 𝑓 ) ∈ ( ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ) )
137 5 6 61 112 104 105 funcf2 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) : ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ⟢ ( ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ) )
138 137 107 ffvelcdmd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ 𝑓 ) ∈ ( ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ) )
139 5 6 55 103 105 106 funcf2 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( 𝑦 ( 2nd β€˜ 𝐹 ) 𝑧 ) : ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ⟢ ( ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐹 ) β€˜ 𝑧 ) ) )
140 139 108 ffvelcdmd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( 𝑦 ( 2nd β€˜ 𝐹 ) 𝑧 ) β€˜ 𝑔 ) ∈ ( ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ( Hom β€˜ 𝐷 ) ( ( 1st β€˜ 𝐹 ) β€˜ 𝑧 ) ) )
141 5 6 61 112 105 106 funcf2 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( 𝑦 ( 2nd β€˜ 𝐺 ) 𝑧 ) : ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ⟢ ( ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ) )
142 141 108 ffvelcdmd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( 𝑦 ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ 𝑔 ) ∈ ( ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ( Hom β€˜ 𝐸 ) ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ) )
143 2 17 18 55 61 128 130 131 132 102 110 24 133 134 136 138 140 142 xpcco2 ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ⟨ ( ( 𝑦 ( 2nd β€˜ 𝐹 ) 𝑧 ) β€˜ 𝑔 ) , ( ( 𝑦 ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ 𝑔 ) ⟩ ( ⟨ ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) ⟩ , ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ⟩ ⟩ ( comp β€˜ 𝑇 ) ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ 𝑧 ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ⟩ ) ⟨ ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ 𝑓 ) , ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ 𝑓 ) ⟩ ) = ⟨ ( ( ( 𝑦 ( 2nd β€˜ 𝐹 ) 𝑧 ) β€˜ 𝑔 ) ( ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝐹 ) β€˜ 𝑧 ) ) ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ 𝑓 ) ) , ( ( ( 𝑦 ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ 𝑔 ) ( ⟨ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ⟩ ( comp β€˜ 𝐸 ) ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ) ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ 𝑓 ) ) ⟩ )
144 126 143 eqtrd ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( ( 𝑦 ( 2nd β€˜ 𝑃 ) 𝑧 ) β€˜ 𝑔 ) ( ⟨ ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝑃 ) β€˜ 𝑦 ) ⟩ ( comp β€˜ 𝑇 ) ( ( 1st β€˜ 𝑃 ) β€˜ 𝑧 ) ) ( ( π‘₯ ( 2nd β€˜ 𝑃 ) 𝑦 ) β€˜ 𝑓 ) ) = ⟨ ( ( ( 𝑦 ( 2nd β€˜ 𝐹 ) 𝑧 ) β€˜ 𝑔 ) ( ⟨ ( ( 1st β€˜ 𝐹 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐹 ) β€˜ 𝑦 ) ⟩ ( comp β€˜ 𝐷 ) ( ( 1st β€˜ 𝐹 ) β€˜ 𝑧 ) ) ( ( π‘₯ ( 2nd β€˜ 𝐹 ) 𝑦 ) β€˜ 𝑓 ) ) , ( ( ( 𝑦 ( 2nd β€˜ 𝐺 ) 𝑧 ) β€˜ 𝑔 ) ( ⟨ ( ( 1st β€˜ 𝐺 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝐺 ) β€˜ 𝑦 ) ⟩ ( comp β€˜ 𝐸 ) ( ( 1st β€˜ 𝐺 ) β€˜ 𝑧 ) ) ( ( π‘₯ ( 2nd β€˜ 𝐺 ) 𝑦 ) β€˜ 𝑓 ) ) ⟩ )
145 114 118 144 3eqtr4d ⊒ ( ( πœ‘ ∧ ( π‘₯ ∈ ( Base β€˜ 𝐢 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐢 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐢 ) ) ∧ ( 𝑓 ∈ ( π‘₯ ( Hom β€˜ 𝐢 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom β€˜ 𝐢 ) 𝑧 ) ) ) β†’ ( ( π‘₯ ( 2nd β€˜ 𝑃 ) 𝑧 ) β€˜ ( 𝑔 ( ⟨ π‘₯ , 𝑦 ⟩ ( comp β€˜ 𝐢 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd β€˜ 𝑃 ) 𝑧 ) β€˜ 𝑔 ) ( ⟨ ( ( 1st β€˜ 𝑃 ) β€˜ π‘₯ ) , ( ( 1st β€˜ 𝑃 ) β€˜ 𝑦 ) ⟩ ( comp β€˜ 𝑇 ) ( ( 1st β€˜ 𝑃 ) β€˜ 𝑧 ) ) ( ( π‘₯ ( 2nd β€˜ 𝑃 ) 𝑦 ) β€˜ 𝑓 ) ) )
146 5 19 6 20 21 22 23 24 27 32 44 50 81 101 145 isfuncd ⊒ ( πœ‘ β†’ ( 1st β€˜ 𝑃 ) ( 𝐢 Func 𝑇 ) ( 2nd β€˜ 𝑃 ) )
147 df-br ⊒ ( ( 1st β€˜ 𝑃 ) ( 𝐢 Func 𝑇 ) ( 2nd β€˜ 𝑃 ) ↔ ⟨ ( 1st β€˜ 𝑃 ) , ( 2nd β€˜ 𝑃 ) ⟩ ∈ ( 𝐢 Func 𝑇 ) )
148 146 147 sylib ⊒ ( πœ‘ β†’ ⟨ ( 1st β€˜ 𝑃 ) , ( 2nd β€˜ 𝑃 ) ⟩ ∈ ( 𝐢 Func 𝑇 ) )
149 16 148 eqeltrd ⊒ ( πœ‘ β†’ 𝑃 ∈ ( 𝐢 Func 𝑇 ) )