Step |
Hyp |
Ref |
Expression |
1 |
|
prfcl.p |
⊢ 𝑃 = ( 𝐹 〈,〉F 𝐺 ) |
2 |
|
prfcl.t |
⊢ 𝑇 = ( 𝐷 ×c 𝐸 ) |
3 |
|
prfcl.c |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
4 |
|
prfcl.d |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐶 Func 𝐸 ) ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
6 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
7 |
1 5 6 3 4
|
prfval |
⊢ ( 𝜑 → 𝑃 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) 〉 ) |
8 |
|
fvex |
⊢ ( Base ‘ 𝐶 ) ∈ V |
9 |
8
|
mptex |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 ) ∈ V |
10 |
8 8
|
mpoex |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) ∈ V |
11 |
9 10
|
op1std |
⊢ ( 𝑃 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) 〉 → ( 1st ‘ 𝑃 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 ) ) |
12 |
7 11
|
syl |
⊢ ( 𝜑 → ( 1st ‘ 𝑃 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 ) ) |
13 |
9 10
|
op2ndd |
⊢ ( 𝑃 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) 〉 → ( 2nd ‘ 𝑃 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) ) |
14 |
7 13
|
syl |
⊢ ( 𝜑 → ( 2nd ‘ 𝑃 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) ) |
15 |
12 14
|
opeq12d |
⊢ ( 𝜑 → 〈 ( 1st ‘ 𝑃 ) , ( 2nd ‘ 𝑃 ) 〉 = 〈 ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 ) , ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) 〉 ) |
16 |
7 15
|
eqtr4d |
⊢ ( 𝜑 → 𝑃 = 〈 ( 1st ‘ 𝑃 ) , ( 2nd ‘ 𝑃 ) 〉 ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
19 |
2 17 18
|
xpcbas |
⊢ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐸 ) ) = ( Base ‘ 𝑇 ) |
20 |
|
eqid |
⊢ ( Hom ‘ 𝑇 ) = ( Hom ‘ 𝑇 ) |
21 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
22 |
|
eqid |
⊢ ( Id ‘ 𝑇 ) = ( Id ‘ 𝑇 ) |
23 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
24 |
|
eqid |
⊢ ( comp ‘ 𝑇 ) = ( comp ‘ 𝑇 ) |
25 |
|
funcrcl |
⊢ ( 𝐹 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
26 |
3 25
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
27 |
26
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
28 |
26
|
simprd |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
29 |
|
funcrcl |
⊢ ( 𝐺 ∈ ( 𝐶 Func 𝐸 ) → ( 𝐶 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
30 |
4 29
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐸 ∈ Cat ) ) |
31 |
30
|
simprd |
⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
32 |
2 28 31
|
xpccat |
⊢ ( 𝜑 → 𝑇 ∈ Cat ) |
33 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐷 ) |
34 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐶 Func 𝐷 ) ∧ 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
35 |
33 3 34
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
36 |
5 17 35
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
37 |
36
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
38 |
|
relfunc |
⊢ Rel ( 𝐶 Func 𝐸 ) |
39 |
|
1st2ndbr |
⊢ ( ( Rel ( 𝐶 Func 𝐸 ) ∧ 𝐺 ∈ ( 𝐶 Func 𝐸 ) ) → ( 1st ‘ 𝐺 ) ( 𝐶 Func 𝐸 ) ( 2nd ‘ 𝐺 ) ) |
40 |
38 4 39
|
sylancr |
⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) ( 𝐶 Func 𝐸 ) ( 2nd ‘ 𝐺 ) ) |
41 |
5 18 40
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝐺 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐸 ) ) |
42 |
41
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐸 ) ) |
43 |
37 42
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 ∈ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐸 ) ) ) |
44 |
12 43
|
fmpt3d |
⊢ ( 𝜑 → ( 1st ‘ 𝑃 ) : ( Base ‘ 𝐶 ) ⟶ ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐸 ) ) ) |
45 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) |
46 |
|
ovex |
⊢ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∈ V |
47 |
46
|
mptex |
⊢ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ∈ V |
48 |
45 47
|
fnmpoi |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
49 |
14
|
fneq1d |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝑃 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) ) |
50 |
48 49
|
mpbiri |
⊢ ( 𝜑 → ( 2nd ‘ 𝑃 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
51 |
14
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 ( 2nd ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) 𝑦 ) ) |
52 |
45
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ∈ V ) → ( 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) 𝑦 ) = ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) |
53 |
47 52
|
mp3an3 |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( 𝑥 ∈ ( Base ‘ 𝐶 ) , 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) 𝑦 ) = ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) |
54 |
51 53
|
sylan9eq |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ 𝑃 ) 𝑦 ) = ( ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ↦ 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ) ) |
55 |
|
eqid |
⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) |
56 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
57 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
58 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
59 |
5 6 55 56 57 58
|
funcf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
60 |
59
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) ∈ ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
61 |
|
eqid |
⊢ ( Hom ‘ 𝐸 ) = ( Hom ‘ 𝐸 ) |
62 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 1st ‘ 𝐺 ) ( 𝐶 Func 𝐸 ) ( 2nd ‘ 𝐺 ) ) |
63 |
5 6 61 62 57 58
|
funcf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
64 |
63
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
65 |
60 64
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ∈ ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) × ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
66 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
67 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐺 ∈ ( 𝐶 Func 𝐸 ) ) |
68 |
1 5 6 66 67 57
|
prf1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) = 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 ) |
69 |
1 5 6 66 67 58
|
prf1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 1st ‘ 𝑃 ) ‘ 𝑦 ) = 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 ) |
70 |
68 69
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) ( Hom ‘ 𝑇 ) ( ( 1st ‘ 𝑃 ) ‘ 𝑦 ) ) = ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 ( Hom ‘ 𝑇 ) 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 ) ) |
71 |
37
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
72 |
42
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐸 ) ) |
73 |
36
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
74 |
73
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
75 |
41
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐸 ) ) |
76 |
75
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐸 ) ) |
77 |
2 17 18 55 61 71 72 74 76 20
|
xpchom2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 ( Hom ‘ 𝑇 ) 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 ) = ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) × ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
78 |
70 77
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) ( Hom ‘ 𝑇 ) ( ( 1st ‘ 𝑃 ) ‘ 𝑦 ) ) = ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) × ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
79 |
78
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) ( Hom ‘ 𝑇 ) ( ( 1st ‘ 𝑃 ) ‘ 𝑦 ) ) = ( ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) × ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) |
80 |
65 79
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ ℎ ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ ℎ ) 〉 ∈ ( ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) ( Hom ‘ 𝑇 ) ( ( 1st ‘ 𝑃 ) ‘ 𝑦 ) ) ) |
81 |
54 80
|
fmpt3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( 2nd ‘ 𝑃 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) ( Hom ‘ 𝑇 ) ( ( 1st ‘ 𝑃 ) ‘ 𝑦 ) ) ) |
82 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
83 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
84 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
85 |
5 21 82 83 84
|
funcid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐷 ) ‘ ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) ) |
86 |
|
eqid |
⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) |
87 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 1st ‘ 𝐺 ) ( 𝐶 Func 𝐸 ) ( 2nd ‘ 𝐺 ) ) |
88 |
5 21 86 87 84
|
funcid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
89 |
85 88
|
opeq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) 〉 = 〈 ( ( Id ‘ 𝐷 ) ‘ ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) , ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) 〉 ) |
90 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
91 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐺 ∈ ( 𝐶 Func 𝐸 ) ) |
92 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
93 |
5 6 21 92 84
|
catidcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
94 |
1 5 6 90 91 84 84 93
|
prf2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ( 2nd ‘ 𝑃 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) 〉 ) |
95 |
1 5 6 90 91 84
|
prf1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) = 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 ) |
96 |
95
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝑇 ) ‘ ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑇 ) ‘ 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 ) ) |
97 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐷 ∈ Cat ) |
98 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐸 ∈ Cat ) |
99 |
2 97 98 17 18 82 86 22 37 42
|
xpcid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝑇 ) ‘ 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 ) = 〈 ( ( Id ‘ 𝐷 ) ‘ ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) , ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) 〉 ) |
100 |
96 99
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝑇 ) ‘ ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) ) = 〈 ( ( Id ‘ 𝐷 ) ‘ ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ) , ( ( Id ‘ 𝐸 ) ‘ ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ) 〉 ) |
101 |
89 94 100
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝑥 ( 2nd ‘ 𝑃 ) 𝑥 ) ‘ ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ) = ( ( Id ‘ 𝑇 ) ‘ ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) ) ) |
102 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
103 |
35
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 1st ‘ 𝐹 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝐹 ) ) |
104 |
|
simp21 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
105 |
|
simp22 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
106 |
|
simp23 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
107 |
|
simp3l |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
108 |
|
simp3r |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
109 |
5 6 23 102 103 104 105 106 107 108
|
funcco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) ) ) |
110 |
|
eqid |
⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) |
111 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝐺 ∈ ( 𝐶 Func 𝐸 ) ) |
112 |
38 111 39
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 1st ‘ 𝐺 ) ( 𝐶 Func 𝐸 ) ( 2nd ‘ 𝐺 ) ) |
113 |
5 6 23 110 112 104 105 106 107 108
|
funcco |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ) ) |
114 |
109 113
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) 〉 = 〈 ( ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) ) , ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ) 〉 ) |
115 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
116 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 𝐶 ∈ Cat ) |
117 |
5 6 23 116 104 105 106 107 108
|
catcocl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
118 |
1 5 6 115 111 104 106 117
|
prf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝑃 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) 〉 ) |
119 |
1 5 6 115 111 104
|
prf1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) = 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 ) |
120 |
1 5 6 115 111 105
|
prf1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 1st ‘ 𝑃 ) ‘ 𝑦 ) = 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 ) |
121 |
119 120
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → 〈 ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑃 ) ‘ 𝑦 ) 〉 = 〈 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 , 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 〉 ) |
122 |
1 5 6 115 111 106
|
prf1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 1st ‘ 𝑃 ) ‘ 𝑧 ) = 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) 〉 ) |
123 |
121 122
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 〈 ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑃 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝑇 ) ( ( 1st ‘ 𝑃 ) ‘ 𝑧 ) ) = ( 〈 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 , 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 〉 ( comp ‘ 𝑇 ) 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) 〉 ) ) |
124 |
1 5 6 115 111 105 106 108
|
prf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd ‘ 𝑃 ) 𝑧 ) ‘ 𝑔 ) = 〈 ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) , ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) 〉 ) |
125 |
1 5 6 115 111 104 105 107
|
prf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝑃 ) 𝑦 ) ‘ 𝑓 ) = 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) 〉 ) |
126 |
123 124 125
|
oveq123d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd ‘ 𝑃 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑃 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝑇 ) ( ( 1st ‘ 𝑃 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝑃 ) 𝑦 ) ‘ 𝑓 ) ) = ( 〈 ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) , ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) 〉 ( 〈 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 , 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 〉 ( comp ‘ 𝑇 ) 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) 〉 ) 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) 〉 ) ) |
127 |
36
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 1st ‘ 𝐹 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
128 |
127 104
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
129 |
41
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 1st ‘ 𝐺 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐸 ) ) |
130 |
129 104
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝐸 ) ) |
131 |
127 105
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
132 |
129 105
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐸 ) ) |
133 |
127 106
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ∈ ( Base ‘ 𝐷 ) ) |
134 |
129 106
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ∈ ( Base ‘ 𝐸 ) ) |
135 |
5 6 55 103 104 105
|
funcf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
136 |
135 107
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) ∈ ( ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ) ) |
137 |
5 6 61 112 104 105
|
funcf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
138 |
137 107
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ) ) |
139 |
5 6 55 103 105 106
|
funcf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ⟶ ( ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ) |
140 |
139 108
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) ∈ ( ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ) |
141 |
5 6 61 112 105 106
|
funcf2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ⟶ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
142 |
141 108
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ∈ ( ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) ( Hom ‘ 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
143 |
2 17 18 55 61 128 130 131 132 102 110 24 133 134 136 138 140 142
|
xpcco2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( 〈 ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) , ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) 〉 ( 〈 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) 〉 , 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 〉 ( comp ‘ 𝑇 ) 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) 〉 ) 〈 ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) , ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) 〉 ) = 〈 ( ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) ) , ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ) 〉 ) |
144 |
126 143
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( ( 𝑦 ( 2nd ‘ 𝑃 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑃 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝑇 ) ( ( 1st ‘ 𝑃 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝑃 ) 𝑦 ) ‘ 𝑓 ) ) = 〈 ( ( ( 𝑦 ( 2nd ‘ 𝐹 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐹 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐹 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝐹 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐹 ) 𝑦 ) ‘ 𝑓 ) ) , ( ( ( 𝑦 ( 2nd ‘ 𝐺 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝐺 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝐺 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝐸 ) ( ( 1st ‘ 𝐺 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝐺 ) 𝑦 ) ‘ 𝑓 ) ) 〉 ) |
145 |
114 118 144
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) → ( ( 𝑥 ( 2nd ‘ 𝑃 ) 𝑧 ) ‘ ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ) = ( ( ( 𝑦 ( 2nd ‘ 𝑃 ) 𝑧 ) ‘ 𝑔 ) ( 〈 ( ( 1st ‘ 𝑃 ) ‘ 𝑥 ) , ( ( 1st ‘ 𝑃 ) ‘ 𝑦 ) 〉 ( comp ‘ 𝑇 ) ( ( 1st ‘ 𝑃 ) ‘ 𝑧 ) ) ( ( 𝑥 ( 2nd ‘ 𝑃 ) 𝑦 ) ‘ 𝑓 ) ) ) |
146 |
5 19 6 20 21 22 23 24 27 32 44 50 81 101 145
|
isfuncd |
⊢ ( 𝜑 → ( 1st ‘ 𝑃 ) ( 𝐶 Func 𝑇 ) ( 2nd ‘ 𝑃 ) ) |
147 |
|
df-br |
⊢ ( ( 1st ‘ 𝑃 ) ( 𝐶 Func 𝑇 ) ( 2nd ‘ 𝑃 ) ↔ 〈 ( 1st ‘ 𝑃 ) , ( 2nd ‘ 𝑃 ) 〉 ∈ ( 𝐶 Func 𝑇 ) ) |
148 |
146 147
|
sylib |
⊢ ( 𝜑 → 〈 ( 1st ‘ 𝑃 ) , ( 2nd ‘ 𝑃 ) 〉 ∈ ( 𝐶 Func 𝑇 ) ) |
149 |
16 148
|
eqeltrd |
⊢ ( 𝜑 → 𝑃 ∈ ( 𝐶 Func 𝑇 ) ) |