Metamath Proof Explorer


Definition df-cofu

Description: Define the composition of two functors. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Assertion df-cofu func=gV,fV1stg1stfxdomdom2ndf,ydomdom2ndf1stfx2ndg1stfyx2ndfy

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccofu classfunc
1 vg setvarg
2 cvv classV
3 vf setvarf
4 c1st class1st
5 1 cv setvarg
6 5 4 cfv class1stg
7 3 cv setvarf
8 7 4 cfv class1stf
9 6 8 ccom class1stg1stf
10 vx setvarx
11 c2nd class2nd
12 7 11 cfv class2ndf
13 12 cdm classdom2ndf
14 13 cdm classdomdom2ndf
15 vy setvary
16 10 cv setvarx
17 16 8 cfv class1stfx
18 5 11 cfv class2ndg
19 15 cv setvary
20 19 8 cfv class1stfy
21 17 20 18 co class1stfx2ndg1stfy
22 16 19 12 co classx2ndfy
23 21 22 ccom class1stfx2ndg1stfyx2ndfy
24 10 15 14 14 23 cmpo classxdomdom2ndf,ydomdom2ndf1stfx2ndg1stfyx2ndfy
25 9 24 cop class1stg1stfxdomdom2ndf,ydomdom2ndf1stfx2ndg1stfyx2ndfy
26 1 3 2 2 25 cmpo classgV,fV1stg1stfxdomdom2ndf,ydomdom2ndf1stfx2ndg1stfyx2ndfy
27 0 26 wceq wfffunc=gV,fV1stg1stfxdomdom2ndf,ydomdom2ndf1stfx2ndg1stfyx2ndfy