Metamath Proof Explorer


Definition df-resf

Description: Define the restriction of a functor to a subcategory (analogue of df-res ). (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion df-resf f=fV,hV1stfdomdomhxdomh2ndfxhx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cresf classf
1 vf setvarf
2 cvv classV
3 vh setvarh
4 c1st class1st
5 1 cv setvarf
6 5 4 cfv class1stf
7 3 cv setvarh
8 7 cdm classdomh
9 8 cdm classdomdomh
10 6 9 cres class1stfdomdomh
11 vx setvarx
12 c2nd class2nd
13 5 12 cfv class2ndf
14 11 cv setvarx
15 14 13 cfv class2ndfx
16 14 7 cfv classhx
17 15 16 cres class2ndfxhx
18 11 8 17 cmpt classxdomh2ndfxhx
19 10 18 cop class1stfdomdomhxdomh2ndfxhx
20 1 3 2 2 19 cmpo classfV,hV1stfdomdomhxdomh2ndfxhx
21 0 20 wceq wfff=fV,hV1stfdomdomhxdomh2ndfxhx