Metamath Proof Explorer


Definition df-uncf

Description: Define the uncurry functor, which can be defined equationally using evalF . Strictly speaking, the third category argument is not needed, since the resulting functor is extensionally equal regardless, but it is used in the equational definition and is too much work to remove. (Contributed by Mario Carneiro, 13-Jan-2017)

Ref Expression
Assertion df-uncf uncurryF=cV,fVc1evalFc2funcffuncc01stFc1⟨,⟩Fc02ndFc1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cuncf classuncurryF
1 vc setvarc
2 cvv classV
3 vf setvarf
4 1 cv setvarc
5 c1 class1
6 5 4 cfv classc1
7 cevlf classevalF
8 c2 class2
9 8 4 cfv classc2
10 6 9 7 co classc1evalFc2
11 ccofu classfunc
12 3 cv setvarf
13 cc0 class0
14 13 4 cfv classc0
15 c1stf class1stF
16 14 6 15 co classc01stFc1
17 12 16 11 co classffuncc01stFc1
18 cprf class⟨,⟩F
19 c2ndf class2ndF
20 14 6 19 co classc02ndFc1
21 17 20 18 co classffuncc01stFc1⟨,⟩Fc02ndFc1
22 10 21 11 co classc1evalFc2funcffuncc01stFc1⟨,⟩Fc02ndFc1
23 1 3 2 2 22 cmpo classcV,fVc1evalFc2funcffuncc01stFc1⟨,⟩Fc02ndFc1
24 0 23 wceq wffuncurryF=cV,fVc1evalFc2funcffuncc01stFc1⟨,⟩Fc02ndFc1