Metamath Proof Explorer


Theorem oppcyon

Description: Value of the opposite Yoneda embedding. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses oppcyon.o
|- O = ( oppCat ` C )
oppcyon.y
|- Y = ( Yon ` O )
oppcyon.m
|- M = ( HomF ` C )
oppcyon.c
|- ( ph -> C e. Cat )
Assertion oppcyon
|- ( ph -> Y = ( <. O , C >. curryF M ) )

Proof

Step Hyp Ref Expression
1 oppcyon.o
 |-  O = ( oppCat ` C )
2 oppcyon.y
 |-  Y = ( Yon ` O )
3 oppcyon.m
 |-  M = ( HomF ` C )
4 oppcyon.c
 |-  ( ph -> C e. Cat )
5 1 2oppchomf
 |-  ( Homf ` C ) = ( Homf ` ( oppCat ` O ) )
6 5 a1i
 |-  ( ph -> ( Homf ` C ) = ( Homf ` ( oppCat ` O ) ) )
7 1 2oppccomf
 |-  ( comf ` C ) = ( comf ` ( oppCat ` O ) )
8 7 a1i
 |-  ( ph -> ( comf ` C ) = ( comf ` ( oppCat ` O ) ) )
9 1 oppccat
 |-  ( C e. Cat -> O e. Cat )
10 4 9 syl
 |-  ( ph -> O e. Cat )
11 eqid
 |-  ( oppCat ` O ) = ( oppCat ` O )
12 11 oppccat
 |-  ( O e. Cat -> ( oppCat ` O ) e. Cat )
13 10 12 syl
 |-  ( ph -> ( oppCat ` O ) e. Cat )
14 6 8 4 13 hofpropd
 |-  ( ph -> ( HomF ` C ) = ( HomF ` ( oppCat ` O ) ) )
15 3 14 eqtrid
 |-  ( ph -> M = ( HomF ` ( oppCat ` O ) ) )
16 15 oveq2d
 |-  ( ph -> ( <. O , ( oppCat ` O ) >. curryF M ) = ( <. O , ( oppCat ` O ) >. curryF ( HomF ` ( oppCat ` O ) ) ) )
17 eqidd
 |-  ( ph -> ( Homf ` O ) = ( Homf ` O ) )
18 eqidd
 |-  ( ph -> ( comf ` O ) = ( comf ` O ) )
19 eqid
 |-  ( SetCat ` ran ( Homf ` C ) ) = ( SetCat ` ran ( Homf ` C ) )
20 fvex
 |-  ( Homf ` C ) e. _V
21 20 rnex
 |-  ran ( Homf ` C ) e. _V
22 21 a1i
 |-  ( ph -> ran ( Homf ` C ) e. _V )
23 ssidd
 |-  ( ph -> ran ( Homf ` C ) C_ ran ( Homf ` C ) )
24 3 1 19 4 22 23 hofcl
 |-  ( ph -> M e. ( ( O Xc. C ) Func ( SetCat ` ran ( Homf ` C ) ) ) )
25 17 18 6 8 10 10 4 13 24 curfpropd
 |-  ( ph -> ( <. O , C >. curryF M ) = ( <. O , ( oppCat ` O ) >. curryF M ) )
26 eqid
 |-  ( HomF ` ( oppCat ` O ) ) = ( HomF ` ( oppCat ` O ) )
27 2 10 11 26 yonval
 |-  ( ph -> Y = ( <. O , ( oppCat ` O ) >. curryF ( HomF ` ( oppCat ` O ) ) ) )
28 16 25 27 3eqtr4rd
 |-  ( ph -> Y = ( <. O , C >. curryF M ) )