Step |
Hyp |
Ref |
Expression |
1 |
|
oppcyon.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
2 |
|
oppcyon.y |
⊢ 𝑌 = ( Yon ‘ 𝑂 ) |
3 |
|
oppcyon.m |
⊢ 𝑀 = ( HomF ‘ 𝐶 ) |
4 |
|
oppcyon.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
5 |
1
|
2oppchomf |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) |
6 |
5
|
a1i |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ ( oppCat ‘ 𝑂 ) ) ) |
7 |
1
|
2oppccomf |
⊢ ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) |
8 |
7
|
a1i |
⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ ( oppCat ‘ 𝑂 ) ) ) |
9 |
1
|
oppccat |
⊢ ( 𝐶 ∈ Cat → 𝑂 ∈ Cat ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Cat ) |
11 |
|
eqid |
⊢ ( oppCat ‘ 𝑂 ) = ( oppCat ‘ 𝑂 ) |
12 |
11
|
oppccat |
⊢ ( 𝑂 ∈ Cat → ( oppCat ‘ 𝑂 ) ∈ Cat ) |
13 |
10 12
|
syl |
⊢ ( 𝜑 → ( oppCat ‘ 𝑂 ) ∈ Cat ) |
14 |
6 8 4 13
|
hofpropd |
⊢ ( 𝜑 → ( HomF ‘ 𝐶 ) = ( HomF ‘ ( oppCat ‘ 𝑂 ) ) ) |
15 |
3 14
|
eqtrid |
⊢ ( 𝜑 → 𝑀 = ( HomF ‘ ( oppCat ‘ 𝑂 ) ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝜑 → ( 〈 𝑂 , ( oppCat ‘ 𝑂 ) 〉 curryF 𝑀 ) = ( 〈 𝑂 , ( oppCat ‘ 𝑂 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝑂 ) ) ) ) |
17 |
|
eqidd |
⊢ ( 𝜑 → ( Homf ‘ 𝑂 ) = ( Homf ‘ 𝑂 ) ) |
18 |
|
eqidd |
⊢ ( 𝜑 → ( compf ‘ 𝑂 ) = ( compf ‘ 𝑂 ) ) |
19 |
|
eqid |
⊢ ( SetCat ‘ ran ( Homf ‘ 𝐶 ) ) = ( SetCat ‘ ran ( Homf ‘ 𝐶 ) ) |
20 |
|
fvex |
⊢ ( Homf ‘ 𝐶 ) ∈ V |
21 |
20
|
rnex |
⊢ ran ( Homf ‘ 𝐶 ) ∈ V |
22 |
21
|
a1i |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ∈ V ) |
23 |
|
ssidd |
⊢ ( 𝜑 → ran ( Homf ‘ 𝐶 ) ⊆ ran ( Homf ‘ 𝐶 ) ) |
24 |
3 1 19 4 22 23
|
hofcl |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝑂 ×c 𝐶 ) Func ( SetCat ‘ ran ( Homf ‘ 𝐶 ) ) ) ) |
25 |
17 18 6 8 10 10 4 13 24
|
curfpropd |
⊢ ( 𝜑 → ( 〈 𝑂 , 𝐶 〉 curryF 𝑀 ) = ( 〈 𝑂 , ( oppCat ‘ 𝑂 ) 〉 curryF 𝑀 ) ) |
26 |
|
eqid |
⊢ ( HomF ‘ ( oppCat ‘ 𝑂 ) ) = ( HomF ‘ ( oppCat ‘ 𝑂 ) ) |
27 |
2 10 11 26
|
yonval |
⊢ ( 𝜑 → 𝑌 = ( 〈 𝑂 , ( oppCat ‘ 𝑂 ) 〉 curryF ( HomF ‘ ( oppCat ‘ 𝑂 ) ) ) ) |
28 |
16 25 27
|
3eqtr4rd |
⊢ ( 𝜑 → 𝑌 = ( 〈 𝑂 , 𝐶 〉 curryF 𝑀 ) ) |