Metamath Proof Explorer


Theorem oppcyon

Description: Value of the opposite Yoneda embedding. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses oppcyon.o O = oppCat C
oppcyon.y Y = Yon O
oppcyon.m M = Hom F C
oppcyon.c φ C Cat
Assertion oppcyon φ Y = O C curry F M

Proof

Step Hyp Ref Expression
1 oppcyon.o O = oppCat C
2 oppcyon.y Y = Yon O
3 oppcyon.m M = Hom F C
4 oppcyon.c φ C Cat
5 1 2oppchomf Hom 𝑓 C = Hom 𝑓 oppCat O
6 5 a1i φ Hom 𝑓 C = Hom 𝑓 oppCat O
7 1 2oppccomf comp 𝑓 C = comp 𝑓 oppCat O
8 7 a1i φ comp 𝑓 C = comp 𝑓 oppCat O
9 1 oppccat C Cat O Cat
10 4 9 syl φ O Cat
11 eqid oppCat O = oppCat O
12 11 oppccat O Cat oppCat O Cat
13 10 12 syl φ oppCat O Cat
14 6 8 4 13 hofpropd φ Hom F C = Hom F oppCat O
15 3 14 eqtrid φ M = Hom F oppCat O
16 15 oveq2d φ O oppCat O curry F M = O oppCat O curry F Hom F oppCat O
17 eqidd φ Hom 𝑓 O = Hom 𝑓 O
18 eqidd φ comp 𝑓 O = comp 𝑓 O
19 eqid SetCat ran Hom 𝑓 C = SetCat ran Hom 𝑓 C
20 fvex Hom 𝑓 C V
21 20 rnex ran Hom 𝑓 C V
22 21 a1i φ ran Hom 𝑓 C V
23 ssidd φ ran Hom 𝑓 C ran Hom 𝑓 C
24 3 1 19 4 22 23 hofcl φ M O × c C Func SetCat ran Hom 𝑓 C
25 17 18 6 8 10 10 4 13 24 curfpropd φ O C curry F M = O oppCat O curry F M
26 eqid Hom F oppCat O = Hom F oppCat O
27 2 10 11 26 yonval φ Y = O oppCat O curry F Hom F oppCat O
28 16 25 27 3eqtr4rd φ Y = O C curry F M