| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcyon.o |
|
| 2 |
|
oppcyon.y |
|
| 3 |
|
oppcyon.m |
|
| 4 |
|
oppcyon.c |
|
| 5 |
1
|
2oppchomf |
|
| 6 |
5
|
a1i |
|
| 7 |
1
|
2oppccomf |
|
| 8 |
7
|
a1i |
|
| 9 |
1
|
oppccat |
|
| 10 |
4 9
|
syl |
|
| 11 |
|
eqid |
|
| 12 |
11
|
oppccat |
|
| 13 |
10 12
|
syl |
|
| 14 |
6 8 4 13
|
hofpropd |
|
| 15 |
3 14
|
eqtrid |
|
| 16 |
15
|
oveq2d |
|
| 17 |
|
eqidd |
|
| 18 |
|
eqidd |
|
| 19 |
|
eqid |
|
| 20 |
|
fvex |
|
| 21 |
20
|
rnex |
|
| 22 |
21
|
a1i |
|
| 23 |
|
ssidd |
|
| 24 |
3 1 19 4 22 23
|
hofcl |
|
| 25 |
17 18 6 8 10 10 4 13 24
|
curfpropd |
|
| 26 |
|
eqid |
|
| 27 |
2 10 11 26
|
yonval |
|
| 28 |
16 25 27
|
3eqtr4rd |
|