Metamath Proof Explorer


Theorem hofpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same Hom functor. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses hofpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
hofpropd.2 φ comp 𝑓 C = comp 𝑓 D
hofpropd.c φ C Cat
hofpropd.d φ D Cat
Assertion hofpropd φ Hom F C = Hom F D

Proof

Step Hyp Ref Expression
1 hofpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
2 hofpropd.2 φ comp 𝑓 C = comp 𝑓 D
3 hofpropd.c φ C Cat
4 hofpropd.d φ D Cat
5 1 homfeqbas φ Base C = Base D
6 5 sqxpeqd φ Base C × Base C = Base D × Base D
7 6 adantr φ x Base C × Base C Base C × Base C = Base D × Base D
8 eqid Base C = Base C
9 eqid Hom C = Hom C
10 eqid Hom D = Hom D
11 1 adantr φ x Base C × Base C y Base C × Base C Hom 𝑓 C = Hom 𝑓 D
12 xp1st y Base C × Base C 1 st y Base C
13 12 ad2antll φ x Base C × Base C y Base C × Base C 1 st y Base C
14 xp1st x Base C × Base C 1 st x Base C
15 14 ad2antrl φ x Base C × Base C y Base C × Base C 1 st x Base C
16 8 9 10 11 13 15 homfeqval φ x Base C × Base C y Base C × Base C 1 st y Hom C 1 st x = 1 st y Hom D 1 st x
17 xp2nd x Base C × Base C 2 nd x Base C
18 17 ad2antrl φ x Base C × Base C y Base C × Base C 2 nd x Base C
19 xp2nd y Base C × Base C 2 nd y Base C
20 19 ad2antll φ x Base C × Base C y Base C × Base C 2 nd y Base C
21 8 9 10 11 18 20 homfeqval φ x Base C × Base C y Base C × Base C 2 nd x Hom C 2 nd y = 2 nd x Hom D 2 nd y
22 21 adantr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x 2 nd x Hom C 2 nd y = 2 nd x Hom D 2 nd y
23 8 9 10 11 15 18 homfeqval φ x Base C × Base C y Base C × Base C 1 st x Hom C 2 nd x = 1 st x Hom D 2 nd x
24 df-ov 1 st x Hom C 2 nd x = Hom C 1 st x 2 nd x
25 df-ov 1 st x Hom D 2 nd x = Hom D 1 st x 2 nd x
26 23 24 25 3eqtr3g φ x Base C × Base C y Base C × Base C Hom C 1 st x 2 nd x = Hom D 1 st x 2 nd x
27 1st2nd2 x Base C × Base C x = 1 st x 2 nd x
28 27 ad2antrl φ x Base C × Base C y Base C × Base C x = 1 st x 2 nd x
29 28 fveq2d φ x Base C × Base C y Base C × Base C Hom C x = Hom C 1 st x 2 nd x
30 28 fveq2d φ x Base C × Base C y Base C × Base C Hom D x = Hom D 1 st x 2 nd x
31 26 29 30 3eqtr4d φ x Base C × Base C y Base C × Base C Hom C x = Hom D x
32 31 adantr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom C x = Hom D x
33 eqid comp C = comp C
34 eqid comp D = comp D
35 11 ad2antrr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x Hom 𝑓 C = Hom 𝑓 D
36 2 ad3antrrr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x comp 𝑓 C = comp 𝑓 D
37 13 ad2antrr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x 1 st y Base C
38 15 ad2antrr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x 1 st x Base C
39 20 ad2antrr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x 2 nd y Base C
40 simplrl φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x f 1 st y Hom C 1 st x
41 28 ad2antrr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x x = 1 st x 2 nd x
42 41 oveq1d φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x x comp C 2 nd y = 1 st x 2 nd x comp C 2 nd y
43 42 oveqd φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h = g 1 st x 2 nd x comp C 2 nd y h
44 3 ad3antrrr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x C Cat
45 18 ad2antrr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x 2 nd x Base C
46 29 adantr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom C x = Hom C 1 st x 2 nd x
47 46 24 eqtr4di φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y Hom C x = 1 st x Hom C 2 nd x
48 47 eleq2d φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x h 1 st x Hom C 2 nd x
49 48 biimpa φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x h 1 st x Hom C 2 nd x
50 simplrr φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g 2 nd x Hom C 2 nd y
51 8 9 33 44 38 45 39 49 50 catcocl φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g 1 st x 2 nd x comp C 2 nd y h 1 st x Hom C 2 nd y
52 43 51 eqeltrd φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st x Hom C 2 nd y
53 8 9 33 34 35 36 37 38 39 40 52 comfeqval φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f = g x comp C 2 nd y h 1 st y 1 st x comp D 2 nd y f
54 8 9 33 34 35 36 38 45 39 49 50 comfeqval φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g 1 st x 2 nd x comp C 2 nd y h = g 1 st x 2 nd x comp D 2 nd y h
55 41 oveq1d φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x x comp D 2 nd y = 1 st x 2 nd x comp D 2 nd y
56 55 oveqd φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp D 2 nd y h = g 1 st x 2 nd x comp D 2 nd y h
57 54 43 56 3eqtr4d φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h = g x comp D 2 nd y h
58 57 oveq1d φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp D 2 nd y f = g x comp D 2 nd y h 1 st y 1 st x comp D 2 nd y f
59 53 58 eqtrd φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f = g x comp D 2 nd y h 1 st y 1 st x comp D 2 nd y f
60 32 59 mpteq12dva φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f = h Hom D x g x comp D 2 nd y h 1 st y 1 st x comp D 2 nd y f
61 16 22 60 mpoeq123dva φ x Base C × Base C y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f = f 1 st y Hom D 1 st x , g 2 nd x Hom D 2 nd y h Hom D x g x comp D 2 nd y h 1 st y 1 st x comp D 2 nd y f
62 6 7 61 mpoeq123dva φ x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f = x Base D × Base D , y Base D × Base D f 1 st y Hom D 1 st x , g 2 nd x Hom D 2 nd y h Hom D x g x comp D 2 nd y h 1 st y 1 st x comp D 2 nd y f
63 1 62 opeq12d φ Hom 𝑓 C x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f = Hom 𝑓 D x Base D × Base D , y Base D × Base D f 1 st y Hom D 1 st x , g 2 nd x Hom D 2 nd y h Hom D x g x comp D 2 nd y h 1 st y 1 st x comp D 2 nd y f
64 eqid Hom F C = Hom F C
65 64 3 8 9 33 hofval φ Hom F C = Hom 𝑓 C x Base C × Base C , y Base C × Base C f 1 st y Hom C 1 st x , g 2 nd x Hom C 2 nd y h Hom C x g x comp C 2 nd y h 1 st y 1 st x comp C 2 nd y f
66 eqid Hom F D = Hom F D
67 eqid Base D = Base D
68 66 4 67 10 34 hofval φ Hom F D = Hom 𝑓 D x Base D × Base D , y Base D × Base D f 1 st y Hom D 1 st x , g 2 nd x Hom D 2 nd y h Hom D x g x comp D 2 nd y h 1 st y 1 st x comp D 2 nd y f
69 63 65 68 3eqtr4d φ Hom F C = Hom F D