| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hofpropd.1 |
|
| 2 |
|
hofpropd.2 |
|
| 3 |
|
hofpropd.c |
|
| 4 |
|
hofpropd.d |
|
| 5 |
1
|
homfeqbas |
|
| 6 |
5
|
sqxpeqd |
|
| 7 |
6
|
adantr |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
1
|
adantr |
|
| 12 |
|
xp1st |
|
| 13 |
12
|
ad2antll |
|
| 14 |
|
xp1st |
|
| 15 |
14
|
ad2antrl |
|
| 16 |
8 9 10 11 13 15
|
homfeqval |
|
| 17 |
|
xp2nd |
|
| 18 |
17
|
ad2antrl |
|
| 19 |
|
xp2nd |
|
| 20 |
19
|
ad2antll |
|
| 21 |
8 9 10 11 18 20
|
homfeqval |
|
| 22 |
21
|
adantr |
|
| 23 |
8 9 10 11 15 18
|
homfeqval |
|
| 24 |
|
df-ov |
|
| 25 |
|
df-ov |
|
| 26 |
23 24 25
|
3eqtr3g |
|
| 27 |
|
1st2nd2 |
|
| 28 |
27
|
ad2antrl |
|
| 29 |
28
|
fveq2d |
|
| 30 |
28
|
fveq2d |
|
| 31 |
26 29 30
|
3eqtr4d |
|
| 32 |
31
|
adantr |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
11
|
ad2antrr |
|
| 36 |
2
|
ad3antrrr |
|
| 37 |
13
|
ad2antrr |
|
| 38 |
15
|
ad2antrr |
|
| 39 |
20
|
ad2antrr |
|
| 40 |
|
simplrl |
|
| 41 |
28
|
ad2antrr |
|
| 42 |
41
|
oveq1d |
|
| 43 |
42
|
oveqd |
|
| 44 |
3
|
ad3antrrr |
|
| 45 |
18
|
ad2antrr |
|
| 46 |
29
|
adantr |
|
| 47 |
46 24
|
eqtr4di |
|
| 48 |
47
|
eleq2d |
|
| 49 |
48
|
biimpa |
|
| 50 |
|
simplrr |
|
| 51 |
8 9 33 44 38 45 39 49 50
|
catcocl |
|
| 52 |
43 51
|
eqeltrd |
|
| 53 |
8 9 33 34 35 36 37 38 39 40 52
|
comfeqval |
|
| 54 |
8 9 33 34 35 36 38 45 39 49 50
|
comfeqval |
|
| 55 |
41
|
oveq1d |
|
| 56 |
55
|
oveqd |
|
| 57 |
54 43 56
|
3eqtr4d |
|
| 58 |
57
|
oveq1d |
|
| 59 |
53 58
|
eqtrd |
|
| 60 |
32 59
|
mpteq12dva |
|
| 61 |
16 22 60
|
mpoeq123dva |
|
| 62 |
6 7 61
|
mpoeq123dva |
|
| 63 |
1 62
|
opeq12d |
|
| 64 |
|
eqid |
|
| 65 |
64 3 8 9 33
|
hofval |
|
| 66 |
|
eqid |
|
| 67 |
|
eqid |
|
| 68 |
66 4 67 10 34
|
hofval |
|
| 69 |
63 65 68
|
3eqtr4d |
|