Metamath Proof Explorer


Theorem oyoncl

Description: The opposite Yoneda embedding is a functor from oppCatC to the functor category C -> SetCat . (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses oyoncl.o O = oppCat C
oyoncl.y Y = Yon O
oyoncl.c φ C Cat
oyoncl.s S = SetCat U
oyoncl.u φ U V
oyoncl.h φ ran Hom 𝑓 C U
oyoncl.q Q = C FuncCat S
Assertion oyoncl φ Y O Func Q

Proof

Step Hyp Ref Expression
1 oyoncl.o O = oppCat C
2 oyoncl.y Y = Yon O
3 oyoncl.c φ C Cat
4 oyoncl.s S = SetCat U
5 oyoncl.u φ U V
6 oyoncl.h φ ran Hom 𝑓 C U
7 oyoncl.q Q = C FuncCat S
8 1 oppccat C Cat O Cat
9 3 8 syl φ O Cat
10 eqid oppCat O = oppCat O
11 eqid oppCat O FuncCat S = oppCat O FuncCat S
12 eqid Hom 𝑓 C = Hom 𝑓 C
13 1 12 oppchomf tpos Hom 𝑓 C = Hom 𝑓 O
14 13 rneqi ran tpos Hom 𝑓 C = ran Hom 𝑓 O
15 relxp Rel Base C × Base C
16 eqid Base C = Base C
17 12 16 homffn Hom 𝑓 C Fn Base C × Base C
18 17 fndmi dom Hom 𝑓 C = Base C × Base C
19 18 releqi Rel dom Hom 𝑓 C Rel Base C × Base C
20 15 19 mpbir Rel dom Hom 𝑓 C
21 rntpos Rel dom Hom 𝑓 C ran tpos Hom 𝑓 C = ran Hom 𝑓 C
22 20 21 ax-mp ran tpos Hom 𝑓 C = ran Hom 𝑓 C
23 14 22 eqtr3i ran Hom 𝑓 O = ran Hom 𝑓 C
24 23 6 eqsstrid φ ran Hom 𝑓 O U
25 2 9 10 4 11 5 24 yoncl φ Y O Func oppCat O FuncCat S
26 1 2oppchomf Hom 𝑓 C = Hom 𝑓 oppCat O
27 26 a1i φ Hom 𝑓 C = Hom 𝑓 oppCat O
28 1 2oppccomf comp 𝑓 C = comp 𝑓 oppCat O
29 28 a1i φ comp 𝑓 C = comp 𝑓 oppCat O
30 eqidd φ Hom 𝑓 S = Hom 𝑓 S
31 eqidd φ comp 𝑓 S = comp 𝑓 S
32 10 oppccat O Cat oppCat O Cat
33 9 32 syl φ oppCat O Cat
34 4 setccat U V S Cat
35 5 34 syl φ S Cat
36 27 29 30 31 3 33 35 35 fucpropd φ C FuncCat S = oppCat O FuncCat S
37 7 36 syl5eq φ Q = oppCat O FuncCat S
38 37 oveq2d φ O Func Q = O Func oppCat O FuncCat S
39 25 38 eleqtrrd φ Y O Func Q