Metamath Proof Explorer


Theorem fucpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same functor categories. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses fucpropd.1 φHom𝑓A=Hom𝑓B
fucpropd.2 φcomp𝑓A=comp𝑓B
fucpropd.3 φHom𝑓C=Hom𝑓D
fucpropd.4 φcomp𝑓C=comp𝑓D
fucpropd.a φACat
fucpropd.b φBCat
fucpropd.c φCCat
fucpropd.d φDCat
Assertion fucpropd φAFuncCatC=BFuncCatD

Proof

Step Hyp Ref Expression
1 fucpropd.1 φHom𝑓A=Hom𝑓B
2 fucpropd.2 φcomp𝑓A=comp𝑓B
3 fucpropd.3 φHom𝑓C=Hom𝑓D
4 fucpropd.4 φcomp𝑓C=comp𝑓D
5 fucpropd.a φACat
6 fucpropd.b φBCat
7 fucpropd.c φCCat
8 fucpropd.d φDCat
9 1 2 3 4 5 6 7 8 funcpropd φAFuncC=BFuncD
10 9 opeq2d φBasendxAFuncC=BasendxBFuncD
11 1 2 3 4 5 6 7 8 natpropd φANatC=BNatD
12 11 opeq2d φHomndxANatC=HomndxBNatD
13 9 sqxpeqd φAFuncC×AFuncC=BFuncD×BFuncD
14 9 adantr φvAFuncC×AFuncCAFuncC=BFuncD
15 nfv fφvAFuncC×AFuncChAFuncC
16 nfcsb1v _f1stv/f2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
17 16 a1i φvAFuncC×AFuncChAFuncC_f1stv/f2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
18 fvexd φvAFuncC×AFuncChAFuncC1stvV
19 nfv gφvAFuncC×AFuncChAFuncCf=1stv
20 nfcsb1v _g2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
21 20 a1i φvAFuncC×AFuncChAFuncCf=1stv_g2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
22 fvexd φvAFuncC×AFuncChAFuncCf=1stv2ndvV
23 11 ad3antrrr φvAFuncC×AFuncChAFuncCf=1stvg=2ndvANatC=BNatD
24 23 oveqd φvAFuncC×AFuncChAFuncCf=1stvg=2ndvgANatCh=gBNatDh
25 23 oveqdr φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChfANatCg=fBNatDg
26 1 homfeqbas φBaseA=BaseB
27 26 ad4antr φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgBaseA=BaseB
28 eqid BaseC=BaseC
29 eqid HomC=HomC
30 eqid compC=compC
31 eqid compD=compD
32 3 ad5antr φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgxBaseAHom𝑓C=Hom𝑓D
33 4 ad5antr φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgxBaseAcomp𝑓C=comp𝑓D
34 eqid BaseA=BaseA
35 relfunc RelAFuncC
36 simpllr φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgf=1stv
37 simp-4r φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgvAFuncC×AFuncChAFuncC
38 37 simpld φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgvAFuncC×AFuncC
39 xp1st vAFuncC×AFuncC1stvAFuncC
40 38 39 syl φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCg1stvAFuncC
41 36 40 eqeltrd φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgfAFuncC
42 1st2ndbr RelAFuncCfAFuncC1stfAFuncC2ndf
43 35 41 42 sylancr φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCg1stfAFuncC2ndf
44 34 28 43 funcf1 φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCg1stf:BaseABaseC
45 44 ffvelcdmda φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgxBaseA1stfxBaseC
46 simplr φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgg=2ndv
47 xp2nd vAFuncC×AFuncC2ndvAFuncC
48 38 47 syl φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCg2ndvAFuncC
49 46 48 eqeltrd φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCggAFuncC
50 1st2ndbr RelAFuncCgAFuncC1stgAFuncC2ndg
51 35 49 50 sylancr φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCg1stgAFuncC2ndg
52 34 28 51 funcf1 φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCg1stg:BaseABaseC
53 52 ffvelcdmda φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgxBaseA1stgxBaseC
54 37 simprd φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCghAFuncC
55 1st2ndbr RelAFuncChAFuncC1sthAFuncC2ndh
56 35 54 55 sylancr φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCg1sthAFuncC2ndh
57 34 28 56 funcf1 φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCg1sth:BaseABaseC
58 57 ffvelcdmda φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgxBaseA1sthxBaseC
59 eqid ANatC=ANatC
60 simplrr φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgxBaseAafANatCg
61 59 60 nat1st2nd φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgxBaseAa1stf2ndfANatC1stg2ndg
62 simpr φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgxBaseAxBaseA
63 59 61 34 29 62 natcl φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgxBaseAax1stfxHomC1stgx
64 simplrl φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgxBaseAbgANatCh
65 59 64 nat1st2nd φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgxBaseAb1stg2ndgANatC1sth2ndh
66 59 65 34 29 62 natcl φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgxBaseAbx1stgxHomC1sthx
67 28 29 30 31 32 33 45 53 58 63 66 comfeqval φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgxBaseAbx1stfx1stgxcompC1sthxax=bx1stfx1stgxcompD1sthxax
68 27 67 mpteq12dva φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatChafANatCgxBaseAbx1stfx1stgxcompC1sthxax=xBaseBbx1stfx1stgxcompD1sthxax
69 24 25 68 mpoeq123dva φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatCh,afANatCgxBaseAbx1stfx1stgxcompC1sthxax=bgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
70 csbeq1a g=2ndvbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax=2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
71 70 adantl φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax=2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
72 69 71 eqtrd φvAFuncC×AFuncChAFuncCf=1stvg=2ndvbgANatCh,afANatCgxBaseAbx1stfx1stgxcompC1sthxax=2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
73 19 21 22 72 csbiedf φvAFuncC×AFuncChAFuncCf=1stv2ndv/gbgANatCh,afANatCgxBaseAbx1stfx1stgxcompC1sthxax=2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
74 csbeq1a f=1stv2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax=1stv/f2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
75 74 adantl φvAFuncC×AFuncChAFuncCf=1stv2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax=1stv/f2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
76 73 75 eqtrd φvAFuncC×AFuncChAFuncCf=1stv2ndv/gbgANatCh,afANatCgxBaseAbx1stfx1stgxcompC1sthxax=1stv/f2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
77 15 17 18 76 csbiedf φvAFuncC×AFuncChAFuncC1stv/f2ndv/gbgANatCh,afANatCgxBaseAbx1stfx1stgxcompC1sthxax=1stv/f2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
78 13 14 77 mpoeq123dva φvAFuncC×AFuncC,hAFuncC1stv/f2ndv/gbgANatCh,afANatCgxBaseAbx1stfx1stgxcompC1sthxax=vBFuncD×BFuncD,hBFuncD1stv/f2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
79 78 opeq2d φcompndxvAFuncC×AFuncC,hAFuncC1stv/f2ndv/gbgANatCh,afANatCgxBaseAbx1stfx1stgxcompC1sthxax=compndxvBFuncD×BFuncD,hBFuncD1stv/f2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
80 10 12 79 tpeq123d φBasendxAFuncCHomndxANatCcompndxvAFuncC×AFuncC,hAFuncC1stv/f2ndv/gbgANatCh,afANatCgxBaseAbx1stfx1stgxcompC1sthxax=BasendxBFuncDHomndxBNatDcompndxvBFuncD×BFuncD,hBFuncD1stv/f2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
81 eqid AFuncCatC=AFuncCatC
82 eqid AFuncC=AFuncC
83 eqidd φvAFuncC×AFuncC,hAFuncC1stv/f2ndv/gbgANatCh,afANatCgxBaseAbx1stfx1stgxcompC1sthxax=vAFuncC×AFuncC,hAFuncC1stv/f2ndv/gbgANatCh,afANatCgxBaseAbx1stfx1stgxcompC1sthxax
84 81 82 59 34 30 5 7 83 fucval φAFuncCatC=BasendxAFuncCHomndxANatCcompndxvAFuncC×AFuncC,hAFuncC1stv/f2ndv/gbgANatCh,afANatCgxBaseAbx1stfx1stgxcompC1sthxax
85 eqid BFuncCatD=BFuncCatD
86 eqid BFuncD=BFuncD
87 eqid BNatD=BNatD
88 eqid BaseB=BaseB
89 eqidd φvBFuncD×BFuncD,hBFuncD1stv/f2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax=vBFuncD×BFuncD,hBFuncD1stv/f2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
90 85 86 87 88 31 6 8 89 fucval φBFuncCatD=BasendxBFuncDHomndxBNatDcompndxvBFuncD×BFuncD,hBFuncD1stv/f2ndv/gbgBNatDh,afBNatDgxBaseBbx1stfx1stgxcompD1sthxax
91 80 84 90 3eqtr4d φAFuncCatC=BFuncCatD