Metamath Proof Explorer


Theorem fucval

Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fucval.q Q=CFuncCatD
fucval.b B=CFuncD
fucval.n N=CNatD
fucval.a A=BaseC
fucval.o ·˙=compD
fucval.c φCCat
fucval.d φDCat
fucval.x φ˙=vB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax
Assertion fucval φQ=BasendxBHomndxNcompndx˙

Proof

Step Hyp Ref Expression
1 fucval.q Q=CFuncCatD
2 fucval.b B=CFuncD
3 fucval.n N=CNatD
4 fucval.a A=BaseC
5 fucval.o ·˙=compD
6 fucval.c φCCat
7 fucval.d φDCat
8 fucval.x φ˙=vB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax
9 df-fuc FuncCat=tCat,uCatBasendxtFuncuHomndxtNatucompndxvtFuncu×tFuncu,htFuncu1stv/f2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax
10 9 a1i φFuncCat=tCat,uCatBasendxtFuncuHomndxtNatucompndxvtFuncu×tFuncu,htFuncu1stv/f2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax
11 simprl φt=Cu=Dt=C
12 simprr φt=Cu=Du=D
13 11 12 oveq12d φt=Cu=DtFuncu=CFuncD
14 13 2 eqtr4di φt=Cu=DtFuncu=B
15 14 opeq2d φt=Cu=DBasendxtFuncu=BasendxB
16 11 12 oveq12d φt=Cu=DtNatu=CNatD
17 16 3 eqtr4di φt=Cu=DtNatu=N
18 17 opeq2d φt=Cu=DHomndxtNatu=HomndxN
19 14 sqxpeqd φt=Cu=DtFuncu×tFuncu=B×B
20 17 oveqd φt=Cu=DgtNatuh=gNh
21 17 oveqd φt=Cu=DftNatug=fNg
22 11 fveq2d φt=Cu=DBaset=BaseC
23 22 4 eqtr4di φt=Cu=DBaset=A
24 12 fveq2d φt=Cu=Dcompu=compD
25 24 5 eqtr4di φt=Cu=Dcompu=·˙
26 25 oveqd φt=Cu=D1stfx1stgxcompu1sthx=1stfx1stgx·˙1sthx
27 26 oveqd φt=Cu=Dbx1stfx1stgxcompu1sthxax=bx1stfx1stgx·˙1sthxax
28 23 27 mpteq12dv φt=Cu=DxBasetbx1stfx1stgxcompu1sthxax=xAbx1stfx1stgx·˙1sthxax
29 20 21 28 mpoeq123dv φt=Cu=DbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax=bgNh,afNgxAbx1stfx1stgx·˙1sthxax
30 29 csbeq2dv φt=Cu=D2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax=2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax
31 30 csbeq2dv φt=Cu=D1stv/f2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax=1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax
32 19 14 31 mpoeq123dv φt=Cu=DvtFuncu×tFuncu,htFuncu1stv/f2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax=vB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax
33 8 adantr φt=Cu=D˙=vB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax
34 32 33 eqtr4d φt=Cu=DvtFuncu×tFuncu,htFuncu1stv/f2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax=˙
35 34 opeq2d φt=Cu=DcompndxvtFuncu×tFuncu,htFuncu1stv/f2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax=compndx˙
36 15 18 35 tpeq123d φt=Cu=DBasendxtFuncuHomndxtNatucompndxvtFuncu×tFuncu,htFuncu1stv/f2ndv/gbgtNatuh,aftNatugxBasetbx1stfx1stgxcompu1sthxax=BasendxBHomndxNcompndx˙
37 tpex BasendxBHomndxNcompndx˙V
38 37 a1i φBasendxBHomndxNcompndx˙V
39 10 36 6 7 38 ovmpod φCFuncCatD=BasendxBHomndxNcompndx˙
40 1 39 eqtrid φQ=BasendxBHomndxNcompndx˙