Metamath Proof Explorer


Theorem fuccofval

Description: Value of the functor category. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses fucval.q Q=CFuncCatD
fucval.b B=CFuncD
fucval.n N=CNatD
fucval.a A=BaseC
fucval.o ·˙=compD
fucval.c φCCat
fucval.d φDCat
fuccofval.x ˙=compQ
Assertion fuccofval φ˙=vB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax

Proof

Step Hyp Ref Expression
1 fucval.q Q=CFuncCatD
2 fucval.b B=CFuncD
3 fucval.n N=CNatD
4 fucval.a A=BaseC
5 fucval.o ·˙=compD
6 fucval.c φCCat
7 fucval.d φDCat
8 fuccofval.x ˙=compQ
9 eqidd φvB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax=vB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax
10 1 2 3 4 5 6 7 9 fucval φQ=BasendxBHomndxNcompndxvB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax
11 10 fveq2d φcompQ=compBasendxBHomndxNcompndxvB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax
12 2 ovexi BV
13 12 12 xpex B×BV
14 13 12 mpoex vB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxaxV
15 catstr BasendxBHomndxNcompndxvB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxaxStruct115
16 ccoid comp=Slotcompndx
17 snsstp3 compndxvB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxaxBasendxBHomndxNcompndxvB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax
18 15 16 17 strfv vB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxaxVvB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax=compBasendxBHomndxNcompndxvB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax
19 14 18 ax-mp vB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax=compBasendxBHomndxNcompndxvB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax
20 11 8 19 3eqtr4g φ˙=vB×B,hB1stv/f2ndv/gbgNh,afNgxAbx1stfx1stgx·˙1sthxax