Step |
Hyp |
Ref |
Expression |
1 |
|
fucpropd.1 |
|- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
2 |
|
fucpropd.2 |
|- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
3 |
|
fucpropd.3 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
4 |
|
fucpropd.4 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
5 |
|
fucpropd.a |
|- ( ph -> A e. Cat ) |
6 |
|
fucpropd.b |
|- ( ph -> B e. Cat ) |
7 |
|
fucpropd.c |
|- ( ph -> C e. Cat ) |
8 |
|
fucpropd.d |
|- ( ph -> D e. Cat ) |
9 |
1 2 3 4 5 6 7 8
|
funcpropd |
|- ( ph -> ( A Func C ) = ( B Func D ) ) |
10 |
9
|
opeq2d |
|- ( ph -> <. ( Base ` ndx ) , ( A Func C ) >. = <. ( Base ` ndx ) , ( B Func D ) >. ) |
11 |
1 2 3 4 5 6 7 8
|
natpropd |
|- ( ph -> ( A Nat C ) = ( B Nat D ) ) |
12 |
11
|
opeq2d |
|- ( ph -> <. ( Hom ` ndx ) , ( A Nat C ) >. = <. ( Hom ` ndx ) , ( B Nat D ) >. ) |
13 |
9
|
sqxpeqd |
|- ( ph -> ( ( A Func C ) X. ( A Func C ) ) = ( ( B Func D ) X. ( B Func D ) ) ) |
14 |
9
|
adantr |
|- ( ( ph /\ v e. ( ( A Func C ) X. ( A Func C ) ) ) -> ( A Func C ) = ( B Func D ) ) |
15 |
|
nfv |
|- F/ f ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) |
16 |
|
nfcsb1v |
|- F/_ f [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) |
17 |
16
|
a1i |
|- ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) -> F/_ f [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
18 |
|
fvexd |
|- ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) -> ( 1st ` v ) e. _V ) |
19 |
|
nfv |
|- F/ g ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) |
20 |
|
nfcsb1v |
|- F/_ g [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) |
21 |
20
|
a1i |
|- ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) -> F/_ g [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
22 |
|
fvexd |
|- ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) -> ( 2nd ` v ) e. _V ) |
23 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) -> ( A Nat C ) = ( B Nat D ) ) |
24 |
23
|
oveqd |
|- ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) -> ( g ( A Nat C ) h ) = ( g ( B Nat D ) h ) ) |
25 |
23
|
oveqdr |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ b e. ( g ( A Nat C ) h ) ) -> ( f ( A Nat C ) g ) = ( f ( B Nat D ) g ) ) |
26 |
1
|
homfeqbas |
|- ( ph -> ( Base ` A ) = ( Base ` B ) ) |
27 |
26
|
ad4antr |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> ( Base ` A ) = ( Base ` B ) ) |
28 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
29 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
30 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
31 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
32 |
3
|
ad5antr |
|- ( ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) /\ x e. ( Base ` A ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
33 |
4
|
ad5antr |
|- ( ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) /\ x e. ( Base ` A ) ) -> ( comf ` C ) = ( comf ` D ) ) |
34 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
35 |
|
relfunc |
|- Rel ( A Func C ) |
36 |
|
simpllr |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> f = ( 1st ` v ) ) |
37 |
|
simp-4r |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) |
38 |
37
|
simpld |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> v e. ( ( A Func C ) X. ( A Func C ) ) ) |
39 |
|
xp1st |
|- ( v e. ( ( A Func C ) X. ( A Func C ) ) -> ( 1st ` v ) e. ( A Func C ) ) |
40 |
38 39
|
syl |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> ( 1st ` v ) e. ( A Func C ) ) |
41 |
36 40
|
eqeltrd |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> f e. ( A Func C ) ) |
42 |
|
1st2ndbr |
|- ( ( Rel ( A Func C ) /\ f e. ( A Func C ) ) -> ( 1st ` f ) ( A Func C ) ( 2nd ` f ) ) |
43 |
35 41 42
|
sylancr |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> ( 1st ` f ) ( A Func C ) ( 2nd ` f ) ) |
44 |
34 28 43
|
funcf1 |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> ( 1st ` f ) : ( Base ` A ) --> ( Base ` C ) ) |
45 |
44
|
ffvelrnda |
|- ( ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) /\ x e. ( Base ` A ) ) -> ( ( 1st ` f ) ` x ) e. ( Base ` C ) ) |
46 |
|
simplr |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> g = ( 2nd ` v ) ) |
47 |
|
xp2nd |
|- ( v e. ( ( A Func C ) X. ( A Func C ) ) -> ( 2nd ` v ) e. ( A Func C ) ) |
48 |
38 47
|
syl |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> ( 2nd ` v ) e. ( A Func C ) ) |
49 |
46 48
|
eqeltrd |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> g e. ( A Func C ) ) |
50 |
|
1st2ndbr |
|- ( ( Rel ( A Func C ) /\ g e. ( A Func C ) ) -> ( 1st ` g ) ( A Func C ) ( 2nd ` g ) ) |
51 |
35 49 50
|
sylancr |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> ( 1st ` g ) ( A Func C ) ( 2nd ` g ) ) |
52 |
34 28 51
|
funcf1 |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> ( 1st ` g ) : ( Base ` A ) --> ( Base ` C ) ) |
53 |
52
|
ffvelrnda |
|- ( ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) /\ x e. ( Base ` A ) ) -> ( ( 1st ` g ) ` x ) e. ( Base ` C ) ) |
54 |
37
|
simprd |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> h e. ( A Func C ) ) |
55 |
|
1st2ndbr |
|- ( ( Rel ( A Func C ) /\ h e. ( A Func C ) ) -> ( 1st ` h ) ( A Func C ) ( 2nd ` h ) ) |
56 |
35 54 55
|
sylancr |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> ( 1st ` h ) ( A Func C ) ( 2nd ` h ) ) |
57 |
34 28 56
|
funcf1 |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> ( 1st ` h ) : ( Base ` A ) --> ( Base ` C ) ) |
58 |
57
|
ffvelrnda |
|- ( ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) /\ x e. ( Base ` A ) ) -> ( ( 1st ` h ) ` x ) e. ( Base ` C ) ) |
59 |
|
eqid |
|- ( A Nat C ) = ( A Nat C ) |
60 |
|
simplrr |
|- ( ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) /\ x e. ( Base ` A ) ) -> a e. ( f ( A Nat C ) g ) ) |
61 |
59 60
|
nat1st2nd |
|- ( ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) /\ x e. ( Base ` A ) ) -> a e. ( <. ( 1st ` f ) , ( 2nd ` f ) >. ( A Nat C ) <. ( 1st ` g ) , ( 2nd ` g ) >. ) ) |
62 |
|
simpr |
|- ( ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) /\ x e. ( Base ` A ) ) -> x e. ( Base ` A ) ) |
63 |
59 61 34 29 62
|
natcl |
|- ( ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) /\ x e. ( Base ` A ) ) -> ( a ` x ) e. ( ( ( 1st ` f ) ` x ) ( Hom ` C ) ( ( 1st ` g ) ` x ) ) ) |
64 |
|
simplrl |
|- ( ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) /\ x e. ( Base ` A ) ) -> b e. ( g ( A Nat C ) h ) ) |
65 |
59 64
|
nat1st2nd |
|- ( ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) /\ x e. ( Base ` A ) ) -> b e. ( <. ( 1st ` g ) , ( 2nd ` g ) >. ( A Nat C ) <. ( 1st ` h ) , ( 2nd ` h ) >. ) ) |
66 |
59 65 34 29 62
|
natcl |
|- ( ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) /\ x e. ( Base ` A ) ) -> ( b ` x ) e. ( ( ( 1st ` g ) ` x ) ( Hom ` C ) ( ( 1st ` h ) ` x ) ) ) |
67 |
28 29 30 31 32 33 45 53 58 63 66
|
comfeqval |
|- ( ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) /\ x e. ( Base ` A ) ) -> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` C ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) = ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) |
68 |
27 67
|
mpteq12dva |
|- ( ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) /\ ( b e. ( g ( A Nat C ) h ) /\ a e. ( f ( A Nat C ) g ) ) ) -> ( x e. ( Base ` A ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` C ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) = ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) |
69 |
24 25 68
|
mpoeq123dva |
|- ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) -> ( b e. ( g ( A Nat C ) h ) , a e. ( f ( A Nat C ) g ) |-> ( x e. ( Base ` A ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` C ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
70 |
|
csbeq1a |
|- ( g = ( 2nd ` v ) -> ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
71 |
70
|
adantl |
|- ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) -> ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
72 |
69 71
|
eqtrd |
|- ( ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) /\ g = ( 2nd ` v ) ) -> ( b e. ( g ( A Nat C ) h ) , a e. ( f ( A Nat C ) g ) |-> ( x e. ( Base ` A ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` C ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
73 |
19 21 22 72
|
csbiedf |
|- ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) -> [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( A Nat C ) h ) , a e. ( f ( A Nat C ) g ) |-> ( x e. ( Base ` A ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` C ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
74 |
|
csbeq1a |
|- ( f = ( 1st ` v ) -> [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
75 |
74
|
adantl |
|- ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) -> [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
76 |
73 75
|
eqtrd |
|- ( ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) /\ f = ( 1st ` v ) ) -> [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( A Nat C ) h ) , a e. ( f ( A Nat C ) g ) |-> ( x e. ( Base ` A ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` C ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
77 |
15 17 18 76
|
csbiedf |
|- ( ( ph /\ ( v e. ( ( A Func C ) X. ( A Func C ) ) /\ h e. ( A Func C ) ) ) -> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( A Nat C ) h ) , a e. ( f ( A Nat C ) g ) |-> ( x e. ( Base ` A ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` C ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) = [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) |
78 |
13 14 77
|
mpoeq123dva |
|- ( ph -> ( v e. ( ( A Func C ) X. ( A Func C ) ) , h e. ( A Func C ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( A Nat C ) h ) , a e. ( f ( A Nat C ) g ) |-> ( x e. ( Base ` A ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` C ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) = ( v e. ( ( B Func D ) X. ( B Func D ) ) , h e. ( B Func D ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) ) |
79 |
78
|
opeq2d |
|- ( ph -> <. ( comp ` ndx ) , ( v e. ( ( A Func C ) X. ( A Func C ) ) , h e. ( A Func C ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( A Nat C ) h ) , a e. ( f ( A Nat C ) g ) |-> ( x e. ( Base ` A ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` C ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. = <. ( comp ` ndx ) , ( v e. ( ( B Func D ) X. ( B Func D ) ) , h e. ( B Func D ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. ) |
80 |
10 12 79
|
tpeq123d |
|- ( ph -> { <. ( Base ` ndx ) , ( A Func C ) >. , <. ( Hom ` ndx ) , ( A Nat C ) >. , <. ( comp ` ndx ) , ( v e. ( ( A Func C ) X. ( A Func C ) ) , h e. ( A Func C ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( A Nat C ) h ) , a e. ( f ( A Nat C ) g ) |-> ( x e. ( Base ` A ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` C ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } = { <. ( Base ` ndx ) , ( B Func D ) >. , <. ( Hom ` ndx ) , ( B Nat D ) >. , <. ( comp ` ndx ) , ( v e. ( ( B Func D ) X. ( B Func D ) ) , h e. ( B Func D ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } ) |
81 |
|
eqid |
|- ( A FuncCat C ) = ( A FuncCat C ) |
82 |
|
eqid |
|- ( A Func C ) = ( A Func C ) |
83 |
|
eqidd |
|- ( ph -> ( v e. ( ( A Func C ) X. ( A Func C ) ) , h e. ( A Func C ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( A Nat C ) h ) , a e. ( f ( A Nat C ) g ) |-> ( x e. ( Base ` A ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` C ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) = ( v e. ( ( A Func C ) X. ( A Func C ) ) , h e. ( A Func C ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( A Nat C ) h ) , a e. ( f ( A Nat C ) g ) |-> ( x e. ( Base ` A ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` C ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) ) |
84 |
81 82 59 34 30 5 7 83
|
fucval |
|- ( ph -> ( A FuncCat C ) = { <. ( Base ` ndx ) , ( A Func C ) >. , <. ( Hom ` ndx ) , ( A Nat C ) >. , <. ( comp ` ndx ) , ( v e. ( ( A Func C ) X. ( A Func C ) ) , h e. ( A Func C ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( A Nat C ) h ) , a e. ( f ( A Nat C ) g ) |-> ( x e. ( Base ` A ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` C ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } ) |
85 |
|
eqid |
|- ( B FuncCat D ) = ( B FuncCat D ) |
86 |
|
eqid |
|- ( B Func D ) = ( B Func D ) |
87 |
|
eqid |
|- ( B Nat D ) = ( B Nat D ) |
88 |
|
eqid |
|- ( Base ` B ) = ( Base ` B ) |
89 |
|
eqidd |
|- ( ph -> ( v e. ( ( B Func D ) X. ( B Func D ) ) , h e. ( B Func D ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) = ( v e. ( ( B Func D ) X. ( B Func D ) ) , h e. ( B Func D ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) ) |
90 |
85 86 87 88 31 6 8 89
|
fucval |
|- ( ph -> ( B FuncCat D ) = { <. ( Base ` ndx ) , ( B Func D ) >. , <. ( Hom ` ndx ) , ( B Nat D ) >. , <. ( comp ` ndx ) , ( v e. ( ( B Func D ) X. ( B Func D ) ) , h e. ( B Func D ) |-> [_ ( 1st ` v ) / f ]_ [_ ( 2nd ` v ) / g ]_ ( b e. ( g ( B Nat D ) h ) , a e. ( f ( B Nat D ) g ) |-> ( x e. ( Base ` B ) |-> ( ( b ` x ) ( <. ( ( 1st ` f ) ` x ) , ( ( 1st ` g ) ` x ) >. ( comp ` D ) ( ( 1st ` h ) ` x ) ) ( a ` x ) ) ) ) ) >. } ) |
91 |
80 84 90
|
3eqtr4d |
|- ( ph -> ( A FuncCat C ) = ( B FuncCat D ) ) |