| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucpropd.1 |
|- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
| 2 |
|
fucpropd.2 |
|- ( ph -> ( comf ` A ) = ( comf ` B ) ) |
| 3 |
|
fucpropd.3 |
|- ( ph -> ( Homf ` C ) = ( Homf ` D ) ) |
| 4 |
|
fucpropd.4 |
|- ( ph -> ( comf ` C ) = ( comf ` D ) ) |
| 5 |
|
fucpropd.a |
|- ( ph -> A e. Cat ) |
| 6 |
|
fucpropd.b |
|- ( ph -> B e. Cat ) |
| 7 |
|
fucpropd.c |
|- ( ph -> C e. Cat ) |
| 8 |
|
fucpropd.d |
|- ( ph -> D e. Cat ) |
| 9 |
1 2 3 4 5 6 7 8
|
funcpropd |
|- ( ph -> ( A Func C ) = ( B Func D ) ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ f e. ( A Func C ) ) -> ( A Func C ) = ( B Func D ) ) |
| 11 |
|
nfv |
|- F/ r ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) |
| 12 |
|
nfcsb1v |
|- F/_ r [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } |
| 13 |
12
|
a1i |
|- ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) -> F/_ r [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 14 |
|
fvexd |
|- ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) -> ( 1st ` f ) e. _V ) |
| 15 |
|
nfv |
|- F/ s ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) |
| 16 |
|
nfcsb1v |
|- F/_ s [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } |
| 17 |
16
|
a1i |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) -> F/_ s [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 18 |
|
fvexd |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) -> ( 1st ` g ) e. _V ) |
| 19 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 20 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 21 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 22 |
3
|
ad4antr |
|- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ x e. ( Base ` A ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 23 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 24 |
|
simplr |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> r = ( 1st ` f ) ) |
| 25 |
|
relfunc |
|- Rel ( A Func C ) |
| 26 |
|
simpllr |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) |
| 27 |
26
|
simpld |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> f e. ( A Func C ) ) |
| 28 |
|
1st2ndbr |
|- ( ( Rel ( A Func C ) /\ f e. ( A Func C ) ) -> ( 1st ` f ) ( A Func C ) ( 2nd ` f ) ) |
| 29 |
25 27 28
|
sylancr |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> ( 1st ` f ) ( A Func C ) ( 2nd ` f ) ) |
| 30 |
24 29
|
eqbrtrd |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> r ( A Func C ) ( 2nd ` f ) ) |
| 31 |
23 19 30
|
funcf1 |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> r : ( Base ` A ) --> ( Base ` C ) ) |
| 32 |
31
|
ffvelcdmda |
|- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ x e. ( Base ` A ) ) -> ( r ` x ) e. ( Base ` C ) ) |
| 33 |
|
simpr |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> s = ( 1st ` g ) ) |
| 34 |
26
|
simprd |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> g e. ( A Func C ) ) |
| 35 |
|
1st2ndbr |
|- ( ( Rel ( A Func C ) /\ g e. ( A Func C ) ) -> ( 1st ` g ) ( A Func C ) ( 2nd ` g ) ) |
| 36 |
25 34 35
|
sylancr |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> ( 1st ` g ) ( A Func C ) ( 2nd ` g ) ) |
| 37 |
33 36
|
eqbrtrd |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> s ( A Func C ) ( 2nd ` g ) ) |
| 38 |
23 19 37
|
funcf1 |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> s : ( Base ` A ) --> ( Base ` C ) ) |
| 39 |
38
|
ffvelcdmda |
|- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ x e. ( Base ` A ) ) -> ( s ` x ) e. ( Base ` C ) ) |
| 40 |
19 20 21 22 32 39
|
homfeqval |
|- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ x e. ( Base ` A ) ) -> ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) = ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) ) |
| 41 |
40
|
ixpeq2dva |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) = X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) ) |
| 42 |
1
|
homfeqbas |
|- ( ph -> ( Base ` A ) = ( Base ` B ) ) |
| 43 |
42
|
ad3antrrr |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 44 |
43
|
ixpeq1d |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) = X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) ) |
| 45 |
41 44
|
eqtrd |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) = X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) ) |
| 46 |
|
fveq2 |
|- ( x = z -> ( r ` x ) = ( r ` z ) ) |
| 47 |
|
fveq2 |
|- ( x = z -> ( s ` x ) = ( s ` z ) ) |
| 48 |
46 47
|
oveq12d |
|- ( x = z -> ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) = ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) |
| 49 |
48
|
cbvixpv |
|- X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) = X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) |
| 50 |
49
|
eleq2i |
|- ( a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) <-> a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) |
| 51 |
43
|
adantr |
|- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 52 |
51
|
adantr |
|- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 53 |
|
eqid |
|- ( Hom ` A ) = ( Hom ` A ) |
| 54 |
|
eqid |
|- ( Hom ` B ) = ( Hom ` B ) |
| 55 |
1
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( Homf ` A ) = ( Homf ` B ) ) |
| 56 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> x e. ( Base ` A ) ) |
| 57 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> y e. ( Base ` A ) ) |
| 58 |
23 53 54 55 56 57
|
homfeqval |
|- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( x ( Hom ` A ) y ) = ( x ( Hom ` B ) y ) ) |
| 59 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 60 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 61 |
3
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( Homf ` C ) = ( Homf ` D ) ) |
| 62 |
4
|
ad7antr |
|- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( comf ` C ) = ( comf ` D ) ) |
| 63 |
32
|
ad5ant13 |
|- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( r ` x ) e. ( Base ` C ) ) |
| 64 |
31
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) -> r : ( Base ` A ) --> ( Base ` C ) ) |
| 65 |
64
|
ffvelcdmda |
|- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( r ` y ) e. ( Base ` C ) ) |
| 66 |
65
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( r ` y ) e. ( Base ` C ) ) |
| 67 |
38
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) -> s : ( Base ` A ) --> ( Base ` C ) ) |
| 68 |
67
|
ffvelcdmda |
|- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( s ` y ) e. ( Base ` C ) ) |
| 69 |
68
|
adantr |
|- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( s ` y ) e. ( Base ` C ) ) |
| 70 |
30
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> r ( A Func C ) ( 2nd ` f ) ) |
| 71 |
23 53 20 70 56 57
|
funcf2 |
|- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( x ( 2nd ` f ) y ) : ( x ( Hom ` A ) y ) --> ( ( r ` x ) ( Hom ` C ) ( r ` y ) ) ) |
| 72 |
71
|
ffvelcdmda |
|- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( ( x ( 2nd ` f ) y ) ` h ) e. ( ( r ` x ) ( Hom ` C ) ( r ` y ) ) ) |
| 73 |
|
fveq2 |
|- ( z = y -> ( r ` z ) = ( r ` y ) ) |
| 74 |
|
fveq2 |
|- ( z = y -> ( s ` z ) = ( s ` y ) ) |
| 75 |
73 74
|
oveq12d |
|- ( z = y -> ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) = ( ( r ` y ) ( Hom ` C ) ( s ` y ) ) ) |
| 76 |
75
|
fvixp |
|- ( ( a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) /\ y e. ( Base ` A ) ) -> ( a ` y ) e. ( ( r ` y ) ( Hom ` C ) ( s ` y ) ) ) |
| 77 |
76
|
ad5ant24 |
|- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( a ` y ) e. ( ( r ` y ) ( Hom ` C ) ( s ` y ) ) ) |
| 78 |
19 20 59 60 61 62 63 66 69 72 77
|
comfeqval |
|- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) ) |
| 79 |
39
|
ad5ant13 |
|- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( s ` x ) e. ( Base ` C ) ) |
| 80 |
|
fveq2 |
|- ( z = x -> ( r ` z ) = ( r ` x ) ) |
| 81 |
|
fveq2 |
|- ( z = x -> ( s ` z ) = ( s ` x ) ) |
| 82 |
80 81
|
oveq12d |
|- ( z = x -> ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) = ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) ) |
| 83 |
82
|
fvixp |
|- ( ( a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) /\ x e. ( Base ` A ) ) -> ( a ` x ) e. ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) ) |
| 84 |
83
|
ad5ant23 |
|- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( a ` x ) e. ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) ) |
| 85 |
37
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> s ( A Func C ) ( 2nd ` g ) ) |
| 86 |
23 53 20 85 56 57
|
funcf2 |
|- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( x ( 2nd ` g ) y ) : ( x ( Hom ` A ) y ) --> ( ( s ` x ) ( Hom ` C ) ( s ` y ) ) ) |
| 87 |
86
|
ffvelcdmda |
|- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( ( x ( 2nd ` g ) y ) ` h ) e. ( ( s ` x ) ( Hom ` C ) ( s ` y ) ) ) |
| 88 |
19 20 59 60 61 62 63 79 69 84 87
|
comfeqval |
|- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) ) |
| 89 |
78 88
|
eqeq12d |
|- ( ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) /\ h e. ( x ( Hom ` A ) y ) ) -> ( ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) <-> ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) ) ) |
| 90 |
58 89
|
raleqbidva |
|- ( ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) /\ y e. ( Base ` A ) ) -> ( A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) <-> A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) ) ) |
| 91 |
52 90
|
raleqbidva |
|- ( ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) /\ x e. ( Base ` A ) ) -> ( A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) <-> A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) ) ) |
| 92 |
51 91
|
raleqbidva |
|- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ z e. ( Base ` A ) ( ( r ` z ) ( Hom ` C ) ( s ` z ) ) ) -> ( A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) <-> A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) ) ) |
| 93 |
50 92
|
sylan2b |
|- ( ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) /\ a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) ) -> ( A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) <-> A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) ) ) |
| 94 |
45 93
|
rabeqbidva |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> { a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) | A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) } = { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 95 |
|
csbeq1a |
|- ( s = ( 1st ` g ) -> { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 96 |
95
|
adantl |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 97 |
94 96
|
eqtrd |
|- ( ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) /\ s = ( 1st ` g ) ) -> { a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) | A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 98 |
15 17 18 97
|
csbiedf |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) -> [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) | A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 99 |
|
csbeq1a |
|- ( r = ( 1st ` f ) -> [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 100 |
99
|
adantl |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) -> [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 101 |
98 100
|
eqtrd |
|- ( ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) /\ r = ( 1st ` f ) ) -> [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) | A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 102 |
11 13 14 101
|
csbiedf |
|- ( ( ph /\ ( f e. ( A Func C ) /\ g e. ( A Func C ) ) ) -> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) | A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) } = [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 103 |
9 10 102
|
mpoeq123dva |
|- ( ph -> ( f e. ( A Func C ) , g e. ( A Func C ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) | A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) } ) = ( f e. ( B Func D ) , g e. ( B Func D ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) ) |
| 104 |
|
eqid |
|- ( A Nat C ) = ( A Nat C ) |
| 105 |
104 23 53 20 59
|
natfval |
|- ( A Nat C ) = ( f e. ( A Func C ) , g e. ( A Func C ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` A ) ( ( r ` x ) ( Hom ` C ) ( s ` x ) ) | A. x e. ( Base ` A ) A. y e. ( Base ` A ) A. h e. ( x ( Hom ` A ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` C ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` C ) ( s ` y ) ) ( a ` x ) ) } ) |
| 106 |
|
eqid |
|- ( B Nat D ) = ( B Nat D ) |
| 107 |
|
eqid |
|- ( Base ` B ) = ( Base ` B ) |
| 108 |
106 107 54 21 60
|
natfval |
|- ( B Nat D ) = ( f e. ( B Func D ) , g e. ( B Func D ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` B ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` B ) A. y e. ( Base ` B ) A. h e. ( x ( Hom ` B ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 109 |
103 105 108
|
3eqtr4g |
|- ( ph -> ( A Nat C ) = ( B Nat D ) ) |