Metamath Proof Explorer


Theorem natpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same natural transformations. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses fucpropd.1 ( 𝜑 → ( Homf𝐴 ) = ( Homf𝐵 ) )
fucpropd.2 ( 𝜑 → ( compf𝐴 ) = ( compf𝐵 ) )
fucpropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
fucpropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
fucpropd.a ( 𝜑𝐴 ∈ Cat )
fucpropd.b ( 𝜑𝐵 ∈ Cat )
fucpropd.c ( 𝜑𝐶 ∈ Cat )
fucpropd.d ( 𝜑𝐷 ∈ Cat )
Assertion natpropd ( 𝜑 → ( 𝐴 Nat 𝐶 ) = ( 𝐵 Nat 𝐷 ) )

Proof

Step Hyp Ref Expression
1 fucpropd.1 ( 𝜑 → ( Homf𝐴 ) = ( Homf𝐵 ) )
2 fucpropd.2 ( 𝜑 → ( compf𝐴 ) = ( compf𝐵 ) )
3 fucpropd.3 ( 𝜑 → ( Homf𝐶 ) = ( Homf𝐷 ) )
4 fucpropd.4 ( 𝜑 → ( compf𝐶 ) = ( compf𝐷 ) )
5 fucpropd.a ( 𝜑𝐴 ∈ Cat )
6 fucpropd.b ( 𝜑𝐵 ∈ Cat )
7 fucpropd.c ( 𝜑𝐶 ∈ Cat )
8 fucpropd.d ( 𝜑𝐷 ∈ Cat )
9 1 2 3 4 5 6 7 8 funcpropd ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) )
10 9 adantr ( ( 𝜑𝑓 ∈ ( 𝐴 Func 𝐶 ) ) → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) )
11 nfv 𝑟 ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) )
12 nfcsb1v 𝑟 ( 1st𝑓 ) / 𝑟 ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) }
13 12 a1i ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) → 𝑟 ( 1st𝑓 ) / 𝑟 ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } )
14 fvexd ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 1st𝑓 ) ∈ V )
15 nfv 𝑠 ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) )
16 nfcsb1v 𝑠 ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) }
17 16 a1i ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) → 𝑠 ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } )
18 fvexd ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) → ( 1st𝑔 ) ∈ V )
19 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
20 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
21 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
22 3 ad4antr ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
23 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
24 simplr ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → 𝑟 = ( 1st𝑓 ) )
25 relfunc Rel ( 𝐴 Func 𝐶 )
26 simpllr ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) )
27 26 simpld ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → 𝑓 ∈ ( 𝐴 Func 𝐶 ) )
28 1st2ndbr ( ( Rel ( 𝐴 Func 𝐶 ) ∧ 𝑓 ∈ ( 𝐴 Func 𝐶 ) ) → ( 1st𝑓 ) ( 𝐴 Func 𝐶 ) ( 2nd𝑓 ) )
29 25 27 28 sylancr ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → ( 1st𝑓 ) ( 𝐴 Func 𝐶 ) ( 2nd𝑓 ) )
30 24 29 eqbrtrd ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → 𝑟 ( 𝐴 Func 𝐶 ) ( 2nd𝑓 ) )
31 23 19 30 funcf1 ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → 𝑟 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) )
32 31 ffvelrnda ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑟𝑥 ) ∈ ( Base ‘ 𝐶 ) )
33 simpr ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → 𝑠 = ( 1st𝑔 ) )
34 26 simprd ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → 𝑔 ∈ ( 𝐴 Func 𝐶 ) )
35 1st2ndbr ( ( Rel ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) → ( 1st𝑔 ) ( 𝐴 Func 𝐶 ) ( 2nd𝑔 ) )
36 25 34 35 sylancr ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → ( 1st𝑔 ) ( 𝐴 Func 𝐶 ) ( 2nd𝑔 ) )
37 33 36 eqbrtrd ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → 𝑠 ( 𝐴 Func 𝐶 ) ( 2nd𝑔 ) )
38 23 19 37 funcf1 ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → 𝑠 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) )
39 38 ffvelrnda ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑠𝑥 ) ∈ ( Base ‘ 𝐶 ) )
40 19 20 21 22 32 39 homfeqval ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) = ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) )
41 40 ixpeq2dva ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) = X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) )
42 1 homfeqbas ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) )
43 42 ad3antrrr ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) )
44 43 ixpeq1d ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) = X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) )
45 41 44 eqtrd ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) = X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) )
46 fveq2 ( 𝑥 = 𝑧 → ( 𝑟𝑥 ) = ( 𝑟𝑧 ) )
47 fveq2 ( 𝑥 = 𝑧 → ( 𝑠𝑥 ) = ( 𝑠𝑧 ) )
48 46 47 oveq12d ( 𝑥 = 𝑧 → ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) = ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) )
49 48 cbvixpv X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) = X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) )
50 49 eleq2i ( 𝑎X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) ↔ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) )
51 43 adantr ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) )
52 51 adantr ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) )
53 eqid ( Hom ‘ 𝐴 ) = ( Hom ‘ 𝐴 )
54 eqid ( Hom ‘ 𝐵 ) = ( Hom ‘ 𝐵 )
55 1 ad6antr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( Homf𝐴 ) = ( Homf𝐵 ) )
56 simplr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) )
57 simpr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) )
58 23 53 54 55 56 57 homfeqval ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) )
59 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
60 eqid ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 )
61 3 ad7antr ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( Homf𝐶 ) = ( Homf𝐷 ) )
62 4 ad7antr ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( compf𝐶 ) = ( compf𝐷 ) )
63 32 ad5ant13 ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑟𝑥 ) ∈ ( Base ‘ 𝐶 ) )
64 31 ad2antrr ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑟 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) )
65 64 ffvelrnda ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑟𝑦 ) ∈ ( Base ‘ 𝐶 ) )
66 65 adantr ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑟𝑦 ) ∈ ( Base ‘ 𝐶 ) )
67 38 ad2antrr ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑠 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) )
68 67 ffvelrnda ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑠𝑦 ) ∈ ( Base ‘ 𝐶 ) )
69 68 adantr ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑠𝑦 ) ∈ ( Base ‘ 𝐶 ) )
70 30 ad3antrrr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑟 ( 𝐴 Func 𝐶 ) ( 2nd𝑓 ) )
71 23 53 20 70 56 57 funcf2 ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( 2nd𝑓 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑟𝑦 ) ) )
72 71 ffvelrnda ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ∈ ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑟𝑦 ) ) )
73 fveq2 ( 𝑧 = 𝑦 → ( 𝑟𝑧 ) = ( 𝑟𝑦 ) )
74 fveq2 ( 𝑧 = 𝑦 → ( 𝑠𝑧 ) = ( 𝑠𝑦 ) )
75 73 74 oveq12d ( 𝑧 = 𝑦 → ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) = ( ( 𝑟𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑦 ) ) )
76 75 fvixp ( ( 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑎𝑦 ) ∈ ( ( 𝑟𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑦 ) ) )
77 76 ad5ant24 ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑎𝑦 ) ∈ ( ( 𝑟𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑦 ) ) )
78 19 20 59 60 61 62 63 66 69 72 77 comfeqval ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) )
79 39 ad5ant13 ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑠𝑥 ) ∈ ( Base ‘ 𝐶 ) )
80 fveq2 ( 𝑧 = 𝑥 → ( 𝑟𝑧 ) = ( 𝑟𝑥 ) )
81 fveq2 ( 𝑧 = 𝑥 → ( 𝑠𝑧 ) = ( 𝑠𝑥 ) )
82 80 81 oveq12d ( 𝑧 = 𝑥 → ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) = ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) )
83 82 fvixp ( ( 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑎𝑥 ) ∈ ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) )
84 83 ad5ant23 ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑎𝑥 ) ∈ ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) )
85 37 ad3antrrr ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑠 ( 𝐴 Func 𝐶 ) ( 2nd𝑔 ) )
86 23 53 20 85 56 57 funcf2 ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( 2nd𝑔 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝑠𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑦 ) ) )
87 86 ffvelrnda ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ∈ ( ( 𝑠𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑦 ) ) )
88 19 20 59 60 61 62 63 79 69 84 87 comfeqval ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) )
89 78 88 eqeq12d ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) ↔ ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) ) )
90 58 89 raleqbidva ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) ↔ ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) ) )
91 52 90 raleqbidva ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) ) )
92 51 91 raleqbidva ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑧 ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) ) )
93 50 92 sylan2b ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) ∧ 𝑎X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) ) )
94 45 93 rabeqbidva ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → { 𝑎X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } = { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } )
95 csbeq1a ( 𝑠 = ( 1st𝑔 ) → { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } = ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } )
96 95 adantl ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } = ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } )
97 94 96 eqtrd ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) ∧ 𝑠 = ( 1st𝑔 ) ) → { 𝑎X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } = ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } )
98 15 17 18 97 csbiedf ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) → ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } = ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } )
99 csbeq1a ( 𝑟 = ( 1st𝑓 ) → ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } = ( 1st𝑓 ) / 𝑟 ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } )
100 99 adantl ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) → ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } = ( 1st𝑓 ) / 𝑟 ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } )
101 98 100 eqtrd ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st𝑓 ) ) → ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } = ( 1st𝑓 ) / 𝑟 ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } )
102 11 13 14 101 csbiedf ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 1st𝑓 ) / 𝑟 ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } = ( 1st𝑓 ) / 𝑟 ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } )
103 9 10 102 mpoeq123dva ( 𝜑 → ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) , 𝑔 ∈ ( 𝐴 Func 𝐶 ) ↦ ( 1st𝑓 ) / 𝑟 ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } ) = ( 𝑓 ∈ ( 𝐵 Func 𝐷 ) , 𝑔 ∈ ( 𝐵 Func 𝐷 ) ↦ ( 1st𝑓 ) / 𝑟 ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } ) )
104 eqid ( 𝐴 Nat 𝐶 ) = ( 𝐴 Nat 𝐶 )
105 104 23 53 20 59 natfval ( 𝐴 Nat 𝐶 ) = ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) , 𝑔 ∈ ( 𝐴 Func 𝐶 ) ↦ ( 1st𝑓 ) / 𝑟 ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐶 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } )
106 eqid ( 𝐵 Nat 𝐷 ) = ( 𝐵 Nat 𝐷 )
107 eqid ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 )
108 106 107 54 21 60 natfval ( 𝐵 Nat 𝐷 ) = ( 𝑓 ∈ ( 𝐵 Func 𝐷 ) , 𝑔 ∈ ( 𝐵 Func 𝐷 ) ↦ ( 1st𝑓 ) / 𝑟 ( 1st𝑔 ) / 𝑠 { 𝑎X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎𝑦 ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑟𝑦 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( ( 𝑥 ( 2nd𝑓 ) 𝑦 ) ‘ ) ) = ( ( ( 𝑥 ( 2nd𝑔 ) 𝑦 ) ‘ ) ( ⟨ ( 𝑟𝑥 ) , ( 𝑠𝑥 ) ⟩ ( comp ‘ 𝐷 ) ( 𝑠𝑦 ) ) ( 𝑎𝑥 ) ) } )
109 103 105 108 3eqtr4g ( 𝜑 → ( 𝐴 Nat 𝐶 ) = ( 𝐵 Nat 𝐷 ) )