Metamath Proof Explorer


Theorem funcpropd

Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same functors. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses funcpropd.1 φHom𝑓A=Hom𝑓B
funcpropd.2 φcomp𝑓A=comp𝑓B
funcpropd.3 φHom𝑓C=Hom𝑓D
funcpropd.4 φcomp𝑓C=comp𝑓D
funcpropd.a φAV
funcpropd.b φBV
funcpropd.c φCV
funcpropd.d φDV
Assertion funcpropd φAFuncC=BFuncD

Proof

Step Hyp Ref Expression
1 funcpropd.1 φHom𝑓A=Hom𝑓B
2 funcpropd.2 φcomp𝑓A=comp𝑓B
3 funcpropd.3 φHom𝑓C=Hom𝑓D
4 funcpropd.4 φcomp𝑓C=comp𝑓D
5 funcpropd.a φAV
6 funcpropd.b φBV
7 funcpropd.c φCV
8 funcpropd.d φDV
9 relfunc RelAFuncC
10 relfunc RelBFuncD
11 1 2 5 6 catpropd φACatBCat
12 3 4 7 8 catpropd φCCatDCat
13 11 12 anbi12d φACatCCatBCatDCat
14 2fveq3 z=wf1stz=f1stw
15 2fveq3 z=wf2ndz=f2ndw
16 14 15 oveq12d z=wf1stzHomCf2ndz=f1stwHomCf2ndw
17 fveq2 z=wHomAz=HomAw
18 16 17 oveq12d z=wf1stzHomCf2ndzHomAz=f1stwHomCf2ndwHomAw
19 18 cbvixpv zBaseA×BaseAf1stzHomCf2ndzHomAz=wBaseA×BaseAf1stwHomCf2ndwHomAw
20 19 eleq2i gzBaseA×BaseAf1stzHomCf2ndzHomAzgwBaseA×BaseAf1stwHomCf2ndwHomAw
21 20 anbi2i f:BaseABaseCgzBaseA×BaseAf1stzHomCf2ndzHomAzf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAw
22 1 ad2antrr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAHom𝑓A=Hom𝑓B
23 2 ad2antrr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAcomp𝑓A=comp𝑓B
24 5 ad2antrr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAAV
25 6 ad2antrr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseABV
26 22 23 24 25 cidpropd φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAIdA=IdB
27 26 fveq1d φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAIdAx=IdBx
28 27 fveq2d φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAxgxIdAx=xgxIdBx
29 3 4 7 8 cidpropd φIdC=IdD
30 29 ad2antrr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAIdC=IdD
31 30 fveq1d φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAIdCfx=IdDfx
32 28 31 eqeq12d φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAxgxIdAx=IdCfxxgxIdBx=IdDfx
33 eqid BaseA=BaseA
34 eqid HomA=HomA
35 eqid compA=compA
36 eqid compB=compB
37 1 ad6antr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzHom𝑓A=Hom𝑓B
38 2 ad6antr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzcomp𝑓A=comp𝑓B
39 simp-5r φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzxBaseA
40 simp-4r φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzyBaseA
41 simpllr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzzBaseA
42 simplr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzmxHomAy
43 simpr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAznyHomAz
44 33 34 35 36 37 38 39 40 41 42 43 comfeqval φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAznxycompAzm=nxycompBzm
45 44 fveq2d φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=xgznxycompBzm
46 eqid BaseC=BaseC
47 eqid HomC=HomC
48 eqid compC=compC
49 eqid compD=compD
50 3 ad6antr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzHom𝑓C=Hom𝑓D
51 4 ad6antr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzcomp𝑓C=comp𝑓D
52 simprl φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwf:BaseABaseC
53 52 ad5antr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzf:BaseABaseC
54 53 39 ffvelcdmd φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzfxBaseC
55 53 40 ffvelcdmd φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzfyBaseC
56 53 41 ffvelcdmd φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzfzBaseC
57 df-ov xgy=gxy
58 simprr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwgwBaseA×BaseAf1stwHomCf2ndwHomAw
59 58 ad5ant12 φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAgwBaseA×BaseAf1stwHomCf2ndwHomAw
60 59 adantr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAygwBaseA×BaseAf1stwHomCf2ndwHomAw
61 opelxpi xBaseAyBaseAxyBaseA×BaseA
62 61 ad5ant23 φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAyxyBaseA×BaseA
63 vex xV
64 vex yV
65 63 64 op1std w=xy1stw=x
66 65 fveq2d w=xyf1stw=fx
67 63 64 op2ndd w=xy2ndw=y
68 67 fveq2d w=xyf2ndw=fy
69 66 68 oveq12d w=xyf1stwHomCf2ndw=fxHomCfy
70 fveq2 w=xyHomAw=HomAxy
71 df-ov xHomAy=HomAxy
72 70 71 eqtr4di w=xyHomAw=xHomAy
73 69 72 oveq12d w=xyf1stwHomCf2ndwHomAw=fxHomCfyxHomAy
74 73 fvixp gwBaseA×BaseAf1stwHomCf2ndwHomAwxyBaseA×BaseAgxyfxHomCfyxHomAy
75 60 62 74 syl2anc φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAygxyfxHomCfyxHomAy
76 57 75 eqeltrid φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAyxgyfxHomCfyxHomAy
77 elmapi xgyfxHomCfyxHomAyxgy:xHomAyfxHomCfy
78 76 77 syl φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAyxgy:xHomAyfxHomCfy
79 78 adantr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzxgy:xHomAyfxHomCfy
80 79 42 ffvelcdmd φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzxgymfxHomCfy
81 df-ov ygz=gyz
82 opelxpi yBaseAzBaseAyzBaseA×BaseA
83 82 adantll φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAyzBaseA×BaseA
84 vex zV
85 64 84 op1std w=yz1stw=y
86 85 fveq2d w=yzf1stw=fy
87 64 84 op2ndd w=yz2ndw=z
88 87 fveq2d w=yzf2ndw=fz
89 86 88 oveq12d w=yzf1stwHomCf2ndw=fyHomCfz
90 fveq2 w=yzHomAw=HomAyz
91 df-ov yHomAz=HomAyz
92 90 91 eqtr4di w=yzHomAw=yHomAz
93 89 92 oveq12d w=yzf1stwHomCf2ndwHomAw=fyHomCfzyHomAz
94 93 fvixp gwBaseA×BaseAf1stwHomCf2ndwHomAwyzBaseA×BaseAgyzfyHomCfzyHomAz
95 59 83 94 syl2anc φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAgyzfyHomCfzyHomAz
96 81 95 eqeltrid φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAygzfyHomCfzyHomAz
97 elmapi ygzfyHomCfzyHomAzygz:yHomAzfyHomCfz
98 96 97 syl φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAygz:yHomAzfyHomCfz
99 98 adantr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAyygz:yHomAzfyHomCfz
100 99 ffvelcdmda φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzygznfyHomCfz
101 46 47 48 49 50 51 54 55 56 80 100 comfeqval φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzygznfxfycompCfzxgym=ygznfxfycompDfzxgym
102 45 101 eqeq12d φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgymxgznxycompBzm=ygznfxfycompDfzxgym
103 102 ralbidva φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgymnyHomAzxgznxycompBzm=ygznfxfycompDfzxgym
104 103 ralbidva φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgymmxHomAynyHomAzxgznxycompBzm=ygznfxfycompDfzxgym
105 eqid HomB=HomB
106 22 ad2antrr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAHom𝑓A=Hom𝑓B
107 simpllr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAxBaseA
108 simplr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAyBaseA
109 33 34 105 106 107 108 homfeqval φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAxHomAy=xHomBy
110 simpr φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAzBaseA
111 33 34 105 106 108 110 homfeqval φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAyHomAz=yHomBz
112 111 raleqdv φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAnyHomAzxgznxycompBzm=ygznfxfycompDfzxgymnyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
113 109 112 raleqbidv φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzxgznxycompBzm=ygznfxfycompDfzxgymmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
114 104 113 bitrd φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgymmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
115 114 ralbidva φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgymzBaseAmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
116 115 ralbidva φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgymyBaseAzBaseAmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
117 32 116 anbi12d φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAxgxIdAx=IdCfxyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgymxgxIdBx=IdDfxyBaseAzBaseAmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
118 117 ralbidva φf:BaseABaseCgwBaseA×BaseAf1stwHomCf2ndwHomAwxBaseAxgxIdAx=IdCfxyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgymxBaseAxgxIdBx=IdDfxyBaseAzBaseAmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
119 21 118 sylan2b φf:BaseABaseCgzBaseA×BaseAf1stzHomCf2ndzHomAzxBaseAxgxIdAx=IdCfxyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgymxBaseAxgxIdBx=IdDfxyBaseAzBaseAmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
120 119 pm5.32da φf:BaseABaseCgzBaseA×BaseAf1stzHomCf2ndzHomAzxBaseAxgxIdAx=IdCfxyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgymf:BaseABaseCgzBaseA×BaseAf1stzHomCf2ndzHomAzxBaseAxgxIdBx=IdDfxyBaseAzBaseAmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
121 eqid HomD=HomD
122 3 ad2antrr φf:BaseABaseCzBaseA×BaseAHom𝑓C=Hom𝑓D
123 simplr φf:BaseABaseCzBaseA×BaseAf:BaseABaseC
124 xp1st zBaseA×BaseA1stzBaseA
125 124 adantl φf:BaseABaseCzBaseA×BaseA1stzBaseA
126 123 125 ffvelcdmd φf:BaseABaseCzBaseA×BaseAf1stzBaseC
127 xp2nd zBaseA×BaseA2ndzBaseA
128 127 adantl φf:BaseABaseCzBaseA×BaseA2ndzBaseA
129 123 128 ffvelcdmd φf:BaseABaseCzBaseA×BaseAf2ndzBaseC
130 46 47 121 122 126 129 homfeqval φf:BaseABaseCzBaseA×BaseAf1stzHomCf2ndz=f1stzHomDf2ndz
131 1 ad2antrr φf:BaseABaseCzBaseA×BaseAHom𝑓A=Hom𝑓B
132 33 34 105 131 125 128 homfeqval φf:BaseABaseCzBaseA×BaseA1stzHomA2ndz=1stzHomB2ndz
133 df-ov 1stzHomA2ndz=HomA1stz2ndz
134 df-ov 1stzHomB2ndz=HomB1stz2ndz
135 132 133 134 3eqtr3g φf:BaseABaseCzBaseA×BaseAHomA1stz2ndz=HomB1stz2ndz
136 1st2nd2 zBaseA×BaseAz=1stz2ndz
137 136 adantl φf:BaseABaseCzBaseA×BaseAz=1stz2ndz
138 137 fveq2d φf:BaseABaseCzBaseA×BaseAHomAz=HomA1stz2ndz
139 137 fveq2d φf:BaseABaseCzBaseA×BaseAHomBz=HomB1stz2ndz
140 135 138 139 3eqtr4d φf:BaseABaseCzBaseA×BaseAHomAz=HomBz
141 130 140 oveq12d φf:BaseABaseCzBaseA×BaseAf1stzHomCf2ndzHomAz=f1stzHomDf2ndzHomBz
142 141 ixpeq2dva φf:BaseABaseCzBaseA×BaseAf1stzHomCf2ndzHomAz=zBaseA×BaseAf1stzHomDf2ndzHomBz
143 1 homfeqbas φBaseA=BaseB
144 143 sqxpeqd φBaseA×BaseA=BaseB×BaseB
145 144 adantr φf:BaseABaseCBaseA×BaseA=BaseB×BaseB
146 145 ixpeq1d φf:BaseABaseCzBaseA×BaseAf1stzHomDf2ndzHomBz=zBaseB×BaseBf1stzHomDf2ndzHomBz
147 142 146 eqtrd φf:BaseABaseCzBaseA×BaseAf1stzHomCf2ndzHomAz=zBaseB×BaseBf1stzHomDf2ndzHomBz
148 147 eleq2d φf:BaseABaseCgzBaseA×BaseAf1stzHomCf2ndzHomAzgzBaseB×BaseBf1stzHomDf2ndzHomBz
149 148 pm5.32da φf:BaseABaseCgzBaseA×BaseAf1stzHomCf2ndzHomAzf:BaseABaseCgzBaseB×BaseBf1stzHomDf2ndzHomBz
150 3 homfeqbas φBaseC=BaseD
151 143 150 feq23d φf:BaseABaseCf:BaseBBaseD
152 151 anbi1d φf:BaseABaseCgzBaseB×BaseBf1stzHomDf2ndzHomBzf:BaseBBaseDgzBaseB×BaseBf1stzHomDf2ndzHomBz
153 149 152 bitrd φf:BaseABaseCgzBaseA×BaseAf1stzHomCf2ndzHomAzf:BaseBBaseDgzBaseB×BaseBf1stzHomDf2ndzHomBz
154 143 adantr φxBaseABaseA=BaseB
155 154 raleqdv φxBaseAzBaseAmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgymzBaseBmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
156 154 155 raleqbidv φxBaseAyBaseAzBaseAmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgymyBaseBzBaseBmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
157 156 anbi2d φxBaseAxgxIdBx=IdDfxyBaseAzBaseAmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgymxgxIdBx=IdDfxyBaseBzBaseBmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
158 143 157 raleqbidva φxBaseAxgxIdBx=IdDfxyBaseAzBaseAmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgymxBaseBxgxIdBx=IdDfxyBaseBzBaseBmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
159 153 158 anbi12d φf:BaseABaseCgzBaseA×BaseAf1stzHomCf2ndzHomAzxBaseAxgxIdBx=IdDfxyBaseAzBaseAmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgymf:BaseBBaseDgzBaseB×BaseBf1stzHomDf2ndzHomBzxBaseBxgxIdBx=IdDfxyBaseBzBaseBmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
160 120 159 bitrd φf:BaseABaseCgzBaseA×BaseAf1stzHomCf2ndzHomAzxBaseAxgxIdAx=IdCfxyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgymf:BaseBBaseDgzBaseB×BaseBf1stzHomDf2ndzHomBzxBaseBxgxIdBx=IdDfxyBaseBzBaseBmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
161 df-3an f:BaseABaseCgzBaseA×BaseAf1stzHomCf2ndzHomAzxBaseAxgxIdAx=IdCfxyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgymf:BaseABaseCgzBaseA×BaseAf1stzHomCf2ndzHomAzxBaseAxgxIdAx=IdCfxyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgym
162 df-3an f:BaseBBaseDgzBaseB×BaseBf1stzHomDf2ndzHomBzxBaseBxgxIdBx=IdDfxyBaseBzBaseBmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgymf:BaseBBaseDgzBaseB×BaseBf1stzHomDf2ndzHomBzxBaseBxgxIdBx=IdDfxyBaseBzBaseBmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
163 160 161 162 3bitr4g φf:BaseABaseCgzBaseA×BaseAf1stzHomCf2ndzHomAzxBaseAxgxIdAx=IdCfxyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgymf:BaseBBaseDgzBaseB×BaseBf1stzHomDf2ndzHomBzxBaseBxgxIdBx=IdDfxyBaseBzBaseBmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
164 13 163 anbi12d φACatCCatf:BaseABaseCgzBaseA×BaseAf1stzHomCf2ndzHomAzxBaseAxgxIdAx=IdCfxyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgymBCatDCatf:BaseBBaseDgzBaseB×BaseBf1stzHomDf2ndzHomBzxBaseBxgxIdBx=IdDfxyBaseBzBaseBmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
165 df-br fAFuncCgfgAFuncC
166 funcrcl fgAFuncCACatCCat
167 165 166 sylbi fAFuncCgACatCCat
168 eqid IdA=IdA
169 eqid IdC=IdC
170 simpl ACatCCatACat
171 simpr ACatCCatCCat
172 33 46 34 47 168 169 35 48 170 171 isfunc ACatCCatfAFuncCgf:BaseABaseCgzBaseA×BaseAf1stzHomCf2ndzHomAzxBaseAxgxIdAx=IdCfxyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgym
173 167 172 biadanii fAFuncCgACatCCatf:BaseABaseCgzBaseA×BaseAf1stzHomCf2ndzHomAzxBaseAxgxIdAx=IdCfxyBaseAzBaseAmxHomAynyHomAzxgznxycompAzm=ygznfxfycompCfzxgym
174 df-br fBFuncDgfgBFuncD
175 funcrcl fgBFuncDBCatDCat
176 174 175 sylbi fBFuncDgBCatDCat
177 eqid BaseB=BaseB
178 eqid BaseD=BaseD
179 eqid IdB=IdB
180 eqid IdD=IdD
181 simpl BCatDCatBCat
182 simpr BCatDCatDCat
183 177 178 105 121 179 180 36 49 181 182 isfunc BCatDCatfBFuncDgf:BaseBBaseDgzBaseB×BaseBf1stzHomDf2ndzHomBzxBaseBxgxIdBx=IdDfxyBaseBzBaseBmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
184 176 183 biadanii fBFuncDgBCatDCatf:BaseBBaseDgzBaseB×BaseBf1stzHomDf2ndzHomBzxBaseBxgxIdBx=IdDfxyBaseBzBaseBmxHomBynyHomBzxgznxycompBzm=ygznfxfycompDfzxgym
185 164 173 184 3bitr4g φfAFuncCgfBFuncDg
186 9 10 185 eqbrrdiv φAFuncC=BFuncD