Metamath Proof Explorer


Theorem ixpeq1d

Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis ixpeq1d.1 φA=B
Assertion ixpeq1d φxAC=xBC

Proof

Step Hyp Ref Expression
1 ixpeq1d.1 φA=B
2 ixpeq1 A=BxAC=xBC
3 1 2 syl φxAC=xBC