Metamath Proof Explorer


Theorem ixpeq1

Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006)

Ref Expression
Assertion ixpeq1 A=BxAC=xBC

Proof

Step Hyp Ref Expression
1 fneq2 A=BfFnAfFnB
2 raleq A=BxAfxCxBfxC
3 1 2 anbi12d A=BfFnAxAfxCfFnBxBfxC
4 3 abbidv A=Bf|fFnAxAfxC=f|fFnBxBfxC
5 dfixp xAC=f|fFnAxAfxC
6 dfixp xBC=f|fFnBxBfxC
7 4 5 6 3eqtr4g A=BxAC=xBC