Metamath Proof Explorer


Theorem cbvixpv

Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypothesis cbvixpv.1 x=yB=C
Assertion cbvixpv xAB=yAC

Proof

Step Hyp Ref Expression
1 cbvixpv.1 x=yB=C
2 nfcv _yB
3 nfcv _xC
4 2 3 1 cbvixp xAB=yAC