Metamath Proof Explorer


Theorem nfixpw

Description: Bound-variable hypothesis builder for indexed Cartesian product. Version of nfixp with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 15-Oct-2016) Avoid ax-13 . (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses nfixpw.1 _yA
nfixpw.2 _yB
Assertion nfixpw _yxAB

Proof

Step Hyp Ref Expression
1 nfixpw.1 _yA
2 nfixpw.2 _yB
3 df-ixp xAB=z|zFnx|xAxAzxB
4 nfcv _yz
5 nfcv _yx
6 5 1 nfel yxA
7 6 nfab _yx|xA
8 7 a1i _yx|xA
9 8 mptru _yx|xA
10 4 9 nffn yzFnx|xA
11 df-ral xAzxBxxAzxB
12 nftru x
13 6 a1i yxA
14 4 a1i _yz
15 5 a1i _yx
16 14 15 nffvd _yzx
17 2 a1i _yB
18 16 17 nfeld yzxB
19 13 18 nfimd yxAzxB
20 12 19 nfald yxxAzxB
21 20 mptru yxxAzxB
22 11 21 nfxfr yxAzxB
23 10 22 nfan yzFnx|xAxAzxB
24 23 nfab _yz|zFnx|xAxAzxB
25 3 24 nfcxfr _yxAB