Metamath Proof Explorer


Theorem nffvd

Description: Deduction version of bound-variable hypothesis builder nffv . (Contributed by NM, 10-Nov-2005) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses nffvd.2 φ_xF
nffvd.3 φ_xA
Assertion nffvd φ_xFA

Proof

Step Hyp Ref Expression
1 nffvd.2 φ_xF
2 nffvd.3 φ_xA
3 nfaba1 _xz|xzF
4 nfaba1 _xz|xzA
5 3 4 nffv _xz|xzFz|xzA
6 nfnfc1 x_xF
7 nfnfc1 x_xA
8 6 7 nfan x_xF_xA
9 abidnf _xFz|xzF=F
10 9 adantr _xF_xAz|xzF=F
11 abidnf _xAz|xzA=A
12 11 adantl _xF_xAz|xzA=A
13 10 12 fveq12d _xF_xAz|xzFz|xzA=FA
14 8 13 nfceqdf _xF_xA_xz|xzFz|xzA_xFA
15 1 2 14 syl2anc φ_xz|xzFz|xzA_xFA
16 5 15 mpbii φ_xFA