Metamath Proof Explorer


Theorem nffvd

Description: Deduction version of bound-variable hypothesis builder nffv . (Contributed by NM, 10-Nov-2005) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses nffvd.2
|- ( ph -> F/_ x F )
nffvd.3
|- ( ph -> F/_ x A )
Assertion nffvd
|- ( ph -> F/_ x ( F ` A ) )

Proof

Step Hyp Ref Expression
1 nffvd.2
 |-  ( ph -> F/_ x F )
2 nffvd.3
 |-  ( ph -> F/_ x A )
3 nfaba1
 |-  F/_ x { z | A. x z e. F }
4 nfaba1
 |-  F/_ x { z | A. x z e. A }
5 3 4 nffv
 |-  F/_ x ( { z | A. x z e. F } ` { z | A. x z e. A } )
6 nfnfc1
 |-  F/ x F/_ x F
7 nfnfc1
 |-  F/ x F/_ x A
8 6 7 nfan
 |-  F/ x ( F/_ x F /\ F/_ x A )
9 abidnf
 |-  ( F/_ x F -> { z | A. x z e. F } = F )
10 9 adantr
 |-  ( ( F/_ x F /\ F/_ x A ) -> { z | A. x z e. F } = F )
11 abidnf
 |-  ( F/_ x A -> { z | A. x z e. A } = A )
12 11 adantl
 |-  ( ( F/_ x F /\ F/_ x A ) -> { z | A. x z e. A } = A )
13 10 12 fveq12d
 |-  ( ( F/_ x F /\ F/_ x A ) -> ( { z | A. x z e. F } ` { z | A. x z e. A } ) = ( F ` A ) )
14 8 13 nfceqdf
 |-  ( ( F/_ x F /\ F/_ x A ) -> ( F/_ x ( { z | A. x z e. F } ` { z | A. x z e. A } ) <-> F/_ x ( F ` A ) ) )
15 1 2 14 syl2anc
 |-  ( ph -> ( F/_ x ( { z | A. x z e. F } ` { z | A. x z e. A } ) <-> F/_ x ( F ` A ) ) )
16 5 15 mpbii
 |-  ( ph -> F/_ x ( F ` A ) )