Metamath Proof Explorer


Theorem nfceqdf

Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016) Avoid ax-8 and df-clel . (Revised by WL and SN, 23-Aug-2024)

Ref Expression
Hypotheses nfceqdf.1 xφ
nfceqdf.2 φA=B
Assertion nfceqdf φ_xA_xB

Proof

Step Hyp Ref Expression
1 nfceqdf.1 xφ
2 nfceqdf.2 φA=B
3 eleq2w2 A=ByAyB
4 2 3 syl φyAyB
5 1 4 nfbidf φxyAxyB
6 5 albidv φyxyAyxyB
7 df-nfc _xAyxyA
8 df-nfc _xByxyB
9 6 7 8 3bitr4g φ_xA_xB