Metamath Proof Explorer


Theorem nfceqdf

Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 14-Oct-2016) Avoid ax-8 and df-clel . (Revised by WL and SN, 23-Aug-2024)

Ref Expression
Hypotheses nfceqdf.1 x φ
nfceqdf.2 φ A = B
Assertion nfceqdf φ _ x A _ x B

Proof

Step Hyp Ref Expression
1 nfceqdf.1 x φ
2 nfceqdf.2 φ A = B
3 eleq2w2 A = B y A y B
4 2 3 syl φ y A y B
5 1 4 nfbidf φ x y A x y B
6 5 albidv φ y x y A y x y B
7 df-nfc _ x A y x y A
8 df-nfc _ x B y x y B
9 6 7 8 3bitr4g φ _ x A _ x B