| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfixpw.1 | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 2 |  | nfixpw.2 | ⊢ Ⅎ 𝑦 𝐵 | 
						
							| 3 |  | df-ixp | ⊢ X 𝑥  ∈  𝐴 𝐵  =  { 𝑧  ∣  ( 𝑧  Fn  { 𝑥  ∣  𝑥  ∈  𝐴 }  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) } | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑦 𝑧 | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑦 𝑥 | 
						
							| 6 | 5 1 | nfel | ⊢ Ⅎ 𝑦 𝑥  ∈  𝐴 | 
						
							| 7 | 6 | nfab | ⊢ Ⅎ 𝑦 { 𝑥  ∣  𝑥  ∈  𝐴 } | 
						
							| 8 | 7 | a1i | ⊢ ( ⊤  →  Ⅎ 𝑦 { 𝑥  ∣  𝑥  ∈  𝐴 } ) | 
						
							| 9 | 8 | mptru | ⊢ Ⅎ 𝑦 { 𝑥  ∣  𝑥  ∈  𝐴 } | 
						
							| 10 | 4 9 | nffn | ⊢ Ⅎ 𝑦 𝑧  Fn  { 𝑥  ∣  𝑥  ∈  𝐴 } | 
						
							| 11 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑧 ‘ 𝑥 )  ∈  𝐵  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 12 |  | nftru | ⊢ Ⅎ 𝑥 ⊤ | 
						
							| 13 | 6 | a1i | ⊢ ( ⊤  →  Ⅎ 𝑦 𝑥  ∈  𝐴 ) | 
						
							| 14 | 4 | a1i | ⊢ ( ⊤  →  Ⅎ 𝑦 𝑧 ) | 
						
							| 15 | 5 | a1i | ⊢ ( ⊤  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 16 | 14 15 | nffvd | ⊢ ( ⊤  →  Ⅎ 𝑦 ( 𝑧 ‘ 𝑥 ) ) | 
						
							| 17 | 2 | a1i | ⊢ ( ⊤  →  Ⅎ 𝑦 𝐵 ) | 
						
							| 18 | 16 17 | nfeld | ⊢ ( ⊤  →  Ⅎ 𝑦 ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 19 | 13 18 | nfimd | ⊢ ( ⊤  →  Ⅎ 𝑦 ( 𝑥  ∈  𝐴  →  ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 20 | 12 19 | nfald | ⊢ ( ⊤  →  Ⅎ 𝑦 ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 21 | 20 | mptru | ⊢ Ⅎ 𝑦 ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 22 | 11 21 | nfxfr | ⊢ Ⅎ 𝑦 ∀ 𝑥  ∈  𝐴 ( 𝑧 ‘ 𝑥 )  ∈  𝐵 | 
						
							| 23 | 10 22 | nfan | ⊢ Ⅎ 𝑦 ( 𝑧  Fn  { 𝑥  ∣  𝑥  ∈  𝐴 }  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 24 | 23 | nfab | ⊢ Ⅎ 𝑦 { 𝑧  ∣  ( 𝑧  Fn  { 𝑥  ∣  𝑥  ∈  𝐴 }  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) } | 
						
							| 25 | 3 24 | nfcxfr | ⊢ Ⅎ 𝑦 X 𝑥  ∈  𝐴 𝐵 |