| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfixp.1 | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 2 |  | nfixp.2 | ⊢ Ⅎ 𝑦 𝐵 | 
						
							| 3 |  | df-ixp | ⊢ X 𝑥  ∈  𝐴 𝐵  =  { 𝑧  ∣  ( 𝑧  Fn  { 𝑥  ∣  𝑥  ∈  𝐴 }  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) } | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑦 𝑧 | 
						
							| 5 |  | nftru | ⊢ Ⅎ 𝑥 ⊤ | 
						
							| 6 |  | nfcvf | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑥  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ⊤  ∧  ¬  ∀ 𝑦 𝑦  =  𝑥 )  →  Ⅎ 𝑦 𝑥 ) | 
						
							| 8 | 1 | a1i | ⊢ ( ( ⊤  ∧  ¬  ∀ 𝑦 𝑦  =  𝑥 )  →  Ⅎ 𝑦 𝐴 ) | 
						
							| 9 | 7 8 | nfeld | ⊢ ( ( ⊤  ∧  ¬  ∀ 𝑦 𝑦  =  𝑥 )  →  Ⅎ 𝑦 𝑥  ∈  𝐴 ) | 
						
							| 10 | 5 9 | nfabd2 | ⊢ ( ⊤  →  Ⅎ 𝑦 { 𝑥  ∣  𝑥  ∈  𝐴 } ) | 
						
							| 11 | 10 | mptru | ⊢ Ⅎ 𝑦 { 𝑥  ∣  𝑥  ∈  𝐴 } | 
						
							| 12 | 4 11 | nffn | ⊢ Ⅎ 𝑦 𝑧  Fn  { 𝑥  ∣  𝑥  ∈  𝐴 } | 
						
							| 13 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝑧 ‘ 𝑥 )  ∈  𝐵  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 14 | 4 | a1i | ⊢ ( ( ⊤  ∧  ¬  ∀ 𝑦 𝑦  =  𝑥 )  →  Ⅎ 𝑦 𝑧 ) | 
						
							| 15 | 14 7 | nffvd | ⊢ ( ( ⊤  ∧  ¬  ∀ 𝑦 𝑦  =  𝑥 )  →  Ⅎ 𝑦 ( 𝑧 ‘ 𝑥 ) ) | 
						
							| 16 | 2 | a1i | ⊢ ( ( ⊤  ∧  ¬  ∀ 𝑦 𝑦  =  𝑥 )  →  Ⅎ 𝑦 𝐵 ) | 
						
							| 17 | 15 16 | nfeld | ⊢ ( ( ⊤  ∧  ¬  ∀ 𝑦 𝑦  =  𝑥 )  →  Ⅎ 𝑦 ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 18 | 9 17 | nfimd | ⊢ ( ( ⊤  ∧  ¬  ∀ 𝑦 𝑦  =  𝑥 )  →  Ⅎ 𝑦 ( 𝑥  ∈  𝐴  →  ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 19 | 5 18 | nfald2 | ⊢ ( ⊤  →  Ⅎ 𝑦 ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) ) | 
						
							| 20 | 19 | mptru | ⊢ Ⅎ 𝑦 ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 21 | 13 20 | nfxfr | ⊢ Ⅎ 𝑦 ∀ 𝑥  ∈  𝐴 ( 𝑧 ‘ 𝑥 )  ∈  𝐵 | 
						
							| 22 | 12 21 | nfan | ⊢ Ⅎ 𝑦 ( 𝑧  Fn  { 𝑥  ∣  𝑥  ∈  𝐴 }  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 23 | 22 | nfab | ⊢ Ⅎ 𝑦 { 𝑧  ∣  ( 𝑧  Fn  { 𝑥  ∣  𝑥  ∈  𝐴 }  ∧  ∀ 𝑥  ∈  𝐴 ( 𝑧 ‘ 𝑥 )  ∈  𝐵 ) } | 
						
							| 24 | 3 23 | nfcxfr | ⊢ Ⅎ 𝑦 X 𝑥  ∈  𝐴 𝐵 |