Metamath Proof Explorer


Theorem nfimd

Description: If in a context x is not free in ps and ch , then it is not free in ( ps -> ch ) . Deduction form of nfim . (Contributed by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 30-Dec-2017) df-nf changed. (Revised by Wolf Lammen, 18-Sep-2021) Eliminate curried form of nfimt . (Revised by Wolf Lammen, 10-Jul-2022)

Ref Expression
Hypotheses nfimd.1 ( 𝜑 → Ⅎ 𝑥 𝜓 )
nfimd.2 ( 𝜑 → Ⅎ 𝑥 𝜒 )
Assertion nfimd ( 𝜑 → Ⅎ 𝑥 ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 nfimd.1 ( 𝜑 → Ⅎ 𝑥 𝜓 )
2 nfimd.2 ( 𝜑 → Ⅎ 𝑥 𝜒 )
3 19.35 ( ∃ 𝑥 ( 𝜓𝜒 ) ↔ ( ∀ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) )
4 3 biimpi ( ∃ 𝑥 ( 𝜓𝜒 ) → ( ∀ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) )
5 1 nfrd ( 𝜑 → ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) )
6 2 nfrd ( 𝜑 → ( ∃ 𝑥 𝜒 → ∀ 𝑥 𝜒 ) )
7 5 6 imim12d ( 𝜑 → ( ( ∀ 𝑥 𝜓 → ∃ 𝑥 𝜒 ) → ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜒 ) ) )
8 19.38 ( ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜒 ) → ∀ 𝑥 ( 𝜓𝜒 ) )
9 4 7 8 syl56 ( 𝜑 → ( ∃ 𝑥 ( 𝜓𝜒 ) → ∀ 𝑥 ( 𝜓𝜒 ) ) )
10 9 nfd ( 𝜑 → Ⅎ 𝑥 ( 𝜓𝜒 ) )