Metamath Proof Explorer


Theorem nfimd

Description: If in a context x is not free in ps and ch , then it is not free in ( ps -> ch ) . Deduction form of nfim . (Contributed by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 30-Dec-2017) df-nf changed. (Revised by Wolf Lammen, 18-Sep-2021) Eliminate curried form of nfimt . (Revised by Wolf Lammen, 10-Jul-2022)

Ref Expression
Hypotheses nfimd.1 φxψ
nfimd.2 φxχ
Assertion nfimd φxψχ

Proof

Step Hyp Ref Expression
1 nfimd.1 φxψ
2 nfimd.2 φxχ
3 19.35 xψχxψxχ
4 3 biimpi xψχxψxχ
5 1 nfrd φxψxψ
6 2 nfrd φxχxχ
7 5 6 imim12d φxψxχxψxχ
8 19.38 xψxχxψχ
9 4 7 8 syl56 φxψχxψχ
10 9 nfd φxψχ