Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) (Proof shortened by Wolf Lammen, 10-May-2023) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfabd2.1 | ⊢ Ⅎ 𝑦 𝜑 | |
nfabd2.2 | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜓 ) | ||
Assertion | nfabd2 | ⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑦 ∣ 𝜓 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfabd2.1 | ⊢ Ⅎ 𝑦 𝜑 | |
2 | nfabd2.2 | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜓 ) | |
3 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
4 | 1 3 | nfan | ⊢ Ⅎ 𝑦 ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) |
5 | 4 2 | nfabd | ⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 { 𝑦 ∣ 𝜓 } ) |
6 | 5 | ex | ⊢ ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 { 𝑦 ∣ 𝜓 } ) ) |
7 | nfab1 | ⊢ Ⅎ 𝑦 { 𝑦 ∣ 𝜓 } | |
8 | eqidd | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → { 𝑦 ∣ 𝜓 } = { 𝑦 ∣ 𝜓 } ) | |
9 | 8 | drnfc1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( Ⅎ 𝑥 { 𝑦 ∣ 𝜓 } ↔ Ⅎ 𝑦 { 𝑦 ∣ 𝜓 } ) ) |
10 | 7 9 | mpbiri | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 { 𝑦 ∣ 𝜓 } ) |
11 | 6 10 | pm2.61d2 | ⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑦 ∣ 𝜓 } ) |