Metamath Proof Explorer


Theorem nfabd2

Description: Bound-variable hypothesis builder for a class abstraction. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) (Proof shortened by Wolf Lammen, 10-May-2023) (New usage is discouraged.)

Ref Expression
Hypotheses nfabd2.1 𝑦 𝜑
nfabd2.2 ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜓 )
Assertion nfabd2 ( 𝜑 𝑥 { 𝑦𝜓 } )

Proof

Step Hyp Ref Expression
1 nfabd2.1 𝑦 𝜑
2 nfabd2.2 ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜓 )
3 nfnae 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦
4 1 3 nfan 𝑦 ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 )
5 4 2 nfabd ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → 𝑥 { 𝑦𝜓 } )
6 5 ex ( 𝜑 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑥 { 𝑦𝜓 } ) )
7 nfab1 𝑦 { 𝑦𝜓 }
8 eqidd ( ∀ 𝑥 𝑥 = 𝑦 → { 𝑦𝜓 } = { 𝑦𝜓 } )
9 8 drnfc1 ( ∀ 𝑥 𝑥 = 𝑦 → ( 𝑥 { 𝑦𝜓 } ↔ 𝑦 { 𝑦𝜓 } ) )
10 7 9 mpbiri ( ∀ 𝑥 𝑥 = 𝑦 𝑥 { 𝑦𝜓 } )
11 6 10 pm2.61d2 ( 𝜑 𝑥 { 𝑦𝜓 } )