| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvelimdc.1 | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 2 |  | dvelimdc.2 | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 3 |  | dvelimdc.3 | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝐴 ) | 
						
							| 4 |  | dvelimdc.4 | ⊢ ( 𝜑  →  Ⅎ 𝑧 𝐵 ) | 
						
							| 5 |  | dvelimdc.5 | ⊢ ( 𝜑  →  ( 𝑧  =  𝑦  →  𝐴  =  𝐵 ) ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑤 ( 𝜑  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 ) | 
						
							| 7 | 3 | nfcrd | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝑤  ∈  𝐴 ) | 
						
							| 8 | 4 | nfcrd | ⊢ ( 𝜑  →  Ⅎ 𝑧 𝑤  ∈  𝐵 ) | 
						
							| 9 |  | eleq2 | ⊢ ( 𝐴  =  𝐵  →  ( 𝑤  ∈  𝐴  ↔  𝑤  ∈  𝐵 ) ) | 
						
							| 10 | 5 9 | syl6 | ⊢ ( 𝜑  →  ( 𝑧  =  𝑦  →  ( 𝑤  ∈  𝐴  ↔  𝑤  ∈  𝐵 ) ) ) | 
						
							| 11 | 1 2 7 8 10 | dvelimdf | ⊢ ( 𝜑  →  ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝑤  ∈  𝐵 ) ) | 
						
							| 12 | 11 | imp | ⊢ ( ( 𝜑  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  Ⅎ 𝑥 𝑤  ∈  𝐵 ) | 
						
							| 13 | 6 12 | nfcd | ⊢ ( ( 𝜑  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  Ⅎ 𝑥 𝐵 ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝜑  →  ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝐵 ) ) |