Metamath Proof Explorer


Theorem nfcrd

Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypothesis nfcrd.1 ( 𝜑 𝑥 𝐴 )
Assertion nfcrd ( 𝜑 → Ⅎ 𝑥 𝑦𝐴 )

Proof

Step Hyp Ref Expression
1 nfcrd.1 ( 𝜑 𝑥 𝐴 )
2 nfcr ( 𝑥 𝐴 → Ⅎ 𝑥 𝑦𝐴 )
3 1 2 syl ( 𝜑 → Ⅎ 𝑥 𝑦𝐴 )