| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvelimdc.1 |  |-  F/ x ph | 
						
							| 2 |  | dvelimdc.2 |  |-  F/ z ph | 
						
							| 3 |  | dvelimdc.3 |  |-  ( ph -> F/_ x A ) | 
						
							| 4 |  | dvelimdc.4 |  |-  ( ph -> F/_ z B ) | 
						
							| 5 |  | dvelimdc.5 |  |-  ( ph -> ( z = y -> A = B ) ) | 
						
							| 6 |  | nfv |  |-  F/ w ( ph /\ -. A. x x = y ) | 
						
							| 7 | 3 | nfcrd |  |-  ( ph -> F/ x w e. A ) | 
						
							| 8 | 4 | nfcrd |  |-  ( ph -> F/ z w e. B ) | 
						
							| 9 |  | eleq2 |  |-  ( A = B -> ( w e. A <-> w e. B ) ) | 
						
							| 10 | 5 9 | syl6 |  |-  ( ph -> ( z = y -> ( w e. A <-> w e. B ) ) ) | 
						
							| 11 | 1 2 7 8 10 | dvelimdf |  |-  ( ph -> ( -. A. x x = y -> F/ x w e. B ) ) | 
						
							| 12 | 11 | imp |  |-  ( ( ph /\ -. A. x x = y ) -> F/ x w e. B ) | 
						
							| 13 | 6 12 | nfcd |  |-  ( ( ph /\ -. A. x x = y ) -> F/_ x B ) | 
						
							| 14 | 13 | ex |  |-  ( ph -> ( -. A. x x = y -> F/_ x B ) ) |