Metamath Proof Explorer


Theorem nfcd

Description: Deduce that a class A does not have x free in it. (Contributed by Mario Carneiro, 11-Aug-2016)

Ref Expression
Hypotheses nfcd.1
|- F/ y ph
nfcd.2
|- ( ph -> F/ x y e. A )
Assertion nfcd
|- ( ph -> F/_ x A )

Proof

Step Hyp Ref Expression
1 nfcd.1
 |-  F/ y ph
2 nfcd.2
 |-  ( ph -> F/ x y e. A )
3 1 2 alrimi
 |-  ( ph -> A. y F/ x y e. A )
4 df-nfc
 |-  ( F/_ x A <-> A. y F/ x y e. A )
5 3 4 sylibr
 |-  ( ph -> F/_ x A )