Description: Deduce that a class A does not have x free in it. (Contributed by Mario Carneiro, 11-Aug-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfcd.1 | |- F/ y ph |
|
nfcd.2 | |- ( ph -> F/ x y e. A ) |
||
Assertion | nfcd | |- ( ph -> F/_ x A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcd.1 | |- F/ y ph |
|
2 | nfcd.2 | |- ( ph -> F/ x y e. A ) |
|
3 | 1 2 | alrimi | |- ( ph -> A. y F/ x y e. A ) |
4 | df-nfc | |- ( F/_ x A <-> A. y F/ x y e. A ) |
|
5 | 3 4 | sylibr | |- ( ph -> F/_ x A ) |