Metamath Proof Explorer


Theorem cbvixp

Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011)

Ref Expression
Hypotheses cbvixp.1 _yB
cbvixp.2 _xC
cbvixp.3 x=yB=C
Assertion cbvixp xAB=yAC

Proof

Step Hyp Ref Expression
1 cbvixp.1 _yB
2 cbvixp.2 _xC
3 cbvixp.3 x=yB=C
4 1 nfel2 yfxB
5 2 nfel2 xfyC
6 fveq2 x=yfx=fy
7 6 3 eleq12d x=yfxBfyC
8 4 5 7 cbvralw xAfxByAfyC
9 8 anbi2i fFnAxAfxBfFnAyAfyC
10 9 abbii f|fFnAxAfxB=f|fFnAyAfyC
11 dfixp xAB=f|fFnAxAfxB
12 dfixp yAC=f|fFnAyAfyC
13 10 11 12 3eqtr4i xAB=yAC